Renin-angiotensin system in hypothyroid rats: effects of potassium iodide and triiodo-L-thyronine

1984 ◽  
Vol 105 (4) ◽  
pp. 505-510 ◽  
Author(s):  
E. Jiménez ◽  
M. Montiel ◽  
J. A. Narváez ◽  
M. Morell

Abstract. Kinetic studies of the renin-angiotensin system (RAS) were carried out by measuring plasma renin activity (PRA), plasma renin concentration (PRC) and plasma renin substrate (PRS). Changes in this system were studied during hypothyroidism, after administration of propylthiouracil (PTU), and in thyroidectomized rats. A significant decrease in PRA and PRC was observed in those animals previously treated with PTU. However, a significant increase in PRC, and a decrease in PRS, were found in T animals, but no changes in PRA were observed. In these animals, after daily administration of potassium iodide for I week (T+KI), no changes in RAS were observed in comparison with T rats. Nevertheless, administration of daily doses of triiodo-ithyronine (T+T3) induced a significant increase in PRA, leaving PRC unaltered. In this case the changes in PRA were related to the increase in PRS after T3 treatment. These results suggest that two different mechanisms were involved in renin release, one activated in T rats and the other in pharmacological hypothyroidism.

1983 ◽  
Vol 64 (5) ◽  
pp. 463-470
Author(s):  
Y. Takata ◽  
A. E. Doyle ◽  
M. Veroni ◽  
S. G. Duffy

1. Blood pressure, the hypotensive effect of captopril, plasma renin activity, renal renin content and kidney weight were measured in the two-kidney—one-clip model, the one-kidney—one-clip model and the two-kidney—one-clip model with the ureter of the contralateral kidney ligated in rats. The ureteric ligation was performed to abolish urinary excretion from the contralateral kidney in the two-kidney—one-clip model. 2. The development of hypertension after renal artery constriction was earlier and greater in the one-kidney—one-clip model and the two-kidney—one-clip model with ureter of the contralateral kidney ligated than in the two-kidney—one-clip model. A single oral dose of captopril produced a greater fall in blood pressure in both the two-kidney models than in the one-kidney—one-clip group. 3. Plasma renin activity and renal renin content of the clipped kidney were higher in the two-kidney model rats, whether or not the ureter had been ligated, than in the one-kidney—one-clip model animals, although more than half the rats from the two-kidney model had normal values. There was a significant correlation between plasma renin activity and the response to captopril in all groups, whereas in none of the three groups was the correlation between plasma renin activity and blood pressure significant. 4. The clipped kidney had a higher renin content than did the contralateral kidney, and the weight of the ischaemic kidney was decreased compared with the contralateral kidney whether it was untouched or had its ureter ligated. The weight of the clipped kidney was in the order one-kidney—one-clip model > two-kidney—one-clip model with ureter of the contralateral kidney ligated > two-kidney—one-clip model. 5. It was concluded that the renin-angiotensin system was stimulated to the similar degree in some animals for the two-kidney—one-clip models, whether or not the ureter of the contralateral kidney had been ligated, compared with the one-kidney—one-clip animals. This finding suggests that the contralateral kidney can stimulate renin secretion and synthesis in the clipped kidney independently of Na+ excretion.


1985 ◽  
Vol 59 (3) ◽  
pp. 924-927 ◽  
Author(s):  
P. R. Freund ◽  
G. L. Brengelmann

We recently found that paraplegic humans respond to hyperthermia with subnormal increase in skin blood flow (SkBF), based on measurements of forearm blood flow (FBF). Is this inhibition of SkBF a defect in thermoregulation or a cardiovascular adjustment necessary for blood pressure control? Since high resting plasma renin activity (PRA) is found in unstressed individuals with spinal cord lesions and since PRA increases during hyperthermia in normal humans, we inquired whether the renin-angiotensin system is responsible for the attenuated FBF in hyperthermic resting paraplegics. Five subjects, 28–47 yr, with spinal transections (T1-T10), were heated in water-perfused suits. Blood samples for PRA determinations were collected during a control period and after internal temperature reached approximately 38 degrees C. Some subjects with markedly attenuated FBF had little or no elevation of PRA; those with the best-developed FBF response exhibited the highest PRA. Clearly, circulating angiotensin is not the agent that attenuates SkBF. Rather, increased activity of the renin-angiotensin system may be a favorable adaptation that counters the locally mediated SkBF increase in the lower body and thus allows controlled active vasodilation in the part of the body subject to centrally integrated sympathetic effector outflow.


1980 ◽  
Vol 238 (5) ◽  
pp. R432-R437 ◽  
Author(s):  
K. B. Wallace ◽  
J. B. Hook ◽  
M. D. Bailie

The purpose of this investigation was to correlate the development of the various enzyme activities associated with the renin-angiotensin system with age-related differences in the steady-state concentrations of angiotensin I (AI) and II (AII). Angiotensin was quantified by radioimmunoassay. Plasma renin activity and concentration increased between birth and 3 wk of age, and declined thereafter to adult values. Renal renin content, on the other hand, increased throughout the first 6 wk of postnatal life. The concentration of AII in plasma also increased following birth; however, maximum concentrations were not attained until 5 wk of age. In contrast, plasma AI did not increase between 3 and 6 wk of age. These data suggest that the steady-state concentration of AII in neonatal rat plasma may be partially limited by the low plasma renin substrate concentration. The increase in AII between 3 and 6 wk of age may reflect the increasing converting enzyme activity.


1980 ◽  
Vol 59 (s6) ◽  
pp. 101s-103s ◽  
Author(s):  
J. R. Sowers ◽  
M. L. Tuck ◽  
J. Barrett ◽  
M. P. Sambhi ◽  
M. S. Golub

1. In rats, intra-arterial metoclopramide, a dopamine antagonist, resulted in an elevation of plasma aldosterone at 5 min and plasma renin activity at 10 min and peak aldosterone and renin responses at 10 and 30 min respectively. 2. Pre-administration of l-dopa blunted and delayed aldosterone and renin responses to metoclopramide, indicating that metoclopramide-induced plasma aldosterone and plasma renin activity increments are mediated by a direct effect of blockade of dopamine receptors rather than other effects of this drug. 3. Pre-administration of angiotensin converting enzyme inhibitor, captopril (SQ 14 225) and the angiotensin II antagonist, saralasin, as well as bilateral nephrectomy did not significantly affect the aldosterone response to metoclopramide, Thus dopaminergic modulation of aldosterone secretion occurs independently of alterations in the renin-angiotensin system. 4. Modulating effects of dopamine on plasma aldosterone are probably mediated by direct effects as well as by interaction with other factors influencing aldosterone secretion at the adrenal zona glomerulosa.


1990 ◽  
Vol 127 (3) ◽  
pp. 513-521 ◽  
Author(s):  
J. M. Brameld ◽  
F. Broughton Pipkin ◽  
E. M. Symonds

ABSTRACT The renal and genital tracts share a common embryological origin; it is thus not surprising that tissues from both can synthesize renin. Preliminary studies showed extremely high concentrations of renin in follicular fluid (FRC) following ovarian stimulation for in-vitro fertilization. This necessitated complete revalidation of the renin assays and showed that data obtained using commercial kits were invalid. An assay protocol was developed using a 1:2 dilution of follicular fluid taken into EDTA (0·3 mol/l) and o-phenanthroline (0·05 mol/l). The assay was performed at pH 7·5 in the presence of excess exogenous (sheep) renin substrate, with incubation periods of 5, 10 and 15 min at 37 °C. This protocol resulted in the linear generation of angiotensin I (AI). Activation of inactive renin was performed using eightfold more trypsin than was required for plasma samples. Follicular renin substrate concentrations (FRS) were measured using the same assay methodology as used for measurement of plasma renin substrate concentrations (PRS). Storage of samples at −18 °C for up to 2 months was found not to affect the FRC, although repeated freeze-thaw cycles did. FRC and plasma renin concentrations (PRC) were very similar in 25 unstimulated control women, studied in the follicular phase of the menstrual cycle. Trypsin activation increased follicular total renin concentration (FTRC) more than plasma total renin concentration (PTRC) (P< 0·0001). FRS was slightly higher than PRS (P<0·02). Ovarian stimulation with clomiphene citrate (CC; six women) was without effect on these parameters. However, hyperstimulation with CC, human menopausal gonadotrophins (hMG) and human chorionic gonadotrophin (hCG) resulted in substantial increments in FRC and FTRC (P< 0·0001 for both) and somewhat smaller rises in PRC and PTRC (P<0·05; P < 0·0005). There was also a small rise in PRS (P< 0·0002), but no change in FRS. Treatment with buserelin, hMG and hCG was associated with similarly large increases in renin concentrations, and also increases in both FRS and PRS (P< 0·003; P<0·007) in comparison with samples from women stimulated with CC, hMG and hCG. Increased plasma renin activity has previously been reported in stimulated ovarian follicular fluid. Our data show clearly that this is primarily due to a rise in FRC and FTRC and not to a rise in FRS. The use of the anti-oestrogen CC alone for ovarian stimulation was without effect on the follicular renin-angiotensin system. Thus we suggest that it is the gonadotrophins themselves which stimulate renin production, presumably by the theca cells. The much smaller rise in PRC and PTRC may reflect the effects of an overspill into the systemic circulation or, less likely, effects of the gonadotrophins on renal renin production. There is no evidence for this latter suggestion. FRS was increased only slightly by ovarian stimulation and must be presumed to be rate-limiting in the generation of AI. Journal of Endocrinology (1990) 127, 513–521


1999 ◽  
Vol 160 (1) ◽  
pp. 43-47 ◽  
Author(s):  
H Kobori ◽  
A Ichihara ◽  
Y Miyashita ◽  
M Hayashi ◽  
T Saruta

We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.


1975 ◽  
Vol 228 (2) ◽  
pp. 613-617 ◽  
Author(s):  
LR Krakoff ◽  
R Selvadurai ◽  
E Sutter

The effect of methylprednisolone or deoxycorticosterone upon systemic arterial blood pressure and components of the renin-angiotensin system was studied in the rat. Rats maintained on regular diets given methylprednisolone suspension 20 mg/kg body wt demonstrated a significant increase in arterial pressure of + 37 plus or minus 5 mmHg, mean plus or minus SE, over a 2-wk period, whereas those treated with DOC and untreated controls showed no significant change. On normal diets, plasma renin concentration (PRC) of methylprednisolone-treated rats was significantly higher than that of DOC-treated rats. Methylprednisolone treatment also resulted in a significant elevation of plasma renin substrate concentration (PRS). Calculated plasma renin activity (PRA) was highest in methylprednisolone-treated rats, significantly above that of the DOC and no-steroid groups. NaCl supplementation resulted in a significant fall in PRC and PRA in all three groups; however, PRS remained significantly above normal in the methylprednisolone-treated rats. The pressor effect of angiotensin II was slightly increased in methylprednisolone-treated rats. Infusion of [Sar1,Ala8]angiotensin II (P-113) in methylprednisolone-treated rats resulted in a significant fall in diastolic arterial pressure. The results imply that methylprednisolone hypertension in the rat may be in part angiotensin dependent.


Sign in / Sign up

Export Citation Format

Share Document