Invoking Occam's razor: A case of familial partial lipodystrophy unifying multiple diagnoses

2021 ◽  
Author(s):  
Heather Sullivan ◽  
Sam Westall ◽  
Abidullah Khan ◽  
Ahtisha Khan ◽  
Alikhan Khan ◽  
...  
1980 ◽  
Vol 25 (10) ◽  
pp. 841-842
Author(s):  
RONALD W. MARX

2007 ◽  
Vol 30 (4) ◽  
pp. 86
Author(s):  
M. Lanktree ◽  
J. Robinson ◽  
J. Creider ◽  
H. Cao ◽  
D. Carter ◽  
...  

Background: In Dunnigan-type familial partial lipodystrophy (FPLD) patients are born with normal fat distribution, but subcutaneous fat from extremities and gluteal regions are lost during puberty. The abnormal fat distribution leads to the development of metabolic syndrome (MetS), a cluster of phenotypes including hyperglycemia, dyslipidemia, hypertension, and visceral obesity. The study of FPLD as a monogenic model of MetS may uncover genetic risk factors of the common MetS which affects ~30% of adult North Americans. Two molecular forms of FPLD have been identified including FPLD2, resulting from heterozygous mutations in the LMNA gene, and FPLD3, resulting from both heterozygous dominant negative and haploinsufficiency mutations in the PPARG gene. However, many patients with clinically diagnosed FPLD have no mutation in either LMNA or PPARG, suggesting the involvement of additional genes in FPLD etiology. Methods: Here, we report the results of an Affymetrix 10K GeneChip microarray genome-wide linkage analysis study of a German kindred displaying the FPLD phenotype and no known lipodystrophy-causing mutations. Results: The investigation identified three chromosomal loci, namely 1q, 3p, and 9q, with non-parametric logarithm of odds (NPL) scores >2.7. While not meeting the criteria for genome-wide significance, it is interesting to note that the 1q and 3p peaks contain the LMNA and PPARG genes respectively. Conclusions: Three possible conclusions can be drawn from these results: 1) the peaks identified are spurious findings, 2) additional genes physically close to LMNA, PPARG, or within 9q, are involved in FPLD etiology, or 3) alternative disease causing mechanisms not identified by standard exon sequencing approaches, such as promoter mutations, alternative splicing, or epigenetics, are also responsible for FPLD.


2010 ◽  
Vol 44 (14) ◽  
pp. i4-i4
Author(s):  
L. Z. Monteiro ◽  
F. A. Pereira ◽  
M. C. Freitas-Foss ◽  
R. M. Montengro ◽  
A. I. A. Medeiros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document