scholarly journals Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (Triticum durumDesf.) Across a Wide Range of Water Availability

Genetics ◽  
2008 ◽  
Vol 178 (1) ◽  
pp. 489-511 ◽  
Author(s):  
Marco Maccaferri ◽  
Maria Corinna Sanguineti ◽  
Simona Corneti ◽  
José Luis Araus Ortega ◽  
Moncef Ben Salem ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 312
Author(s):  
Giacomo Mangini ◽  
Antonio Blanco ◽  
Domenica Nigro ◽  
Massimo Antonio Signorile ◽  
Rosanna Simeone

Grain yield (YLD) is affected by thousand kernel weight (TKW) which reflects the combination of grain length (GL), grain width (GW) and grain area (AREA). Grain weight is also influenced by heading time (HT) and plant height (PH). To detect candidate genes and quantitative trait loci (QTL) of yield components, a durum wheat recombinant inbred line (RIL) population was evaluated in three field trials. The RIL was genotyped with a 90K single nucleotide polymorphism (SNP) array and a high-density genetic linkage map with 5134 markers was obtained. A total of 30 QTL were detected including 23 QTL grouped in clusters on 1B, 2A, 3A, 4B and 6B chromosomes. A QTL cluster on 2A chromosome included a major QTL for HT co-located with QTL for YLD, TKW, GL, GW and AREA, respectively. The photoperiod sensitivity (Ppd-A1) gene was found in the physical position of this cluster. Serine carboxypeptidase, Big grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing QTL for seed size. This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate QTL cluster detection. This was a requisite to physically map QTL on durum genome and to identify candidate genes affecting grain yield.


2001 ◽  
Vol 29 (3-4) ◽  
pp. 237-244 ◽  
Author(s):  
A. Blanco ◽  
C. Lotti ◽  
R. Simeone ◽  
A. Signorile ◽  
V. De Santis ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuefeng Ruan ◽  
Bianyun Yu ◽  
Ron E. Knox ◽  
Wentao Zhang ◽  
Asheesh K. Singh ◽  
...  

Grain protein concentration (GPC) is an important trait in durum cultivar development as a major determinant of the nutritional value of grain and end-use product quality. However, it is challenging to simultaneously select both GPC and grain yield (GY) due to the negative correlation between them. To characterize quantitative trait loci (QTL) for GPC and understand the genetic relationship between GPC and GY in Canadian durum wheat, we performed both traditional and conditional QTL mapping using a doubled haploid (DH) population of 162 lines derived from Pelissier × Strongfield. The population was grown in the field over 5 years and GPC was measured. QTL contributing to GPC were detected on chromosome 1B, 2B, 3A, 5B, 7A, and 7B using traditional mapping. One major QTL on 3A (QGpc.spa-3A.3) was consistently detected over 3 years accounting for 9.4–18.1% of the phenotypic variance, with the favorable allele derived from Pelissier. Another major QTL on 7A (QGpc.spa-7A) detected in 3 years explained 6.9–14.8% of the phenotypic variance, with the beneficial allele derived from Strongfield. Comparison of the QTL described here with the results previously reported led to the identification of one novel major QTL on 3A (QGpc.spa-3A.3) and five novel minor QTL on 1B, 2B and 3A. Four QTL were common between traditional and conditional mapping, with QGpc.spa-3A.3 and QGpc.spa-7A detected in multiple environments. The QTL identified by conditional mapping were independent or partially independent of GY, making them of great importance for development of high GPC and high yielding durum.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yuefeng Ruan ◽  
Bianyun Yu ◽  
Ron E. Knox ◽  
Asheesh K. Singh ◽  
Ron DePauw ◽  
...  

2015 ◽  
Author(s):  
Christine Peterson ◽  
Susan Service ◽  
Anna Jasinska ◽  
Fuying Gao ◽  
Ivette Zelaya ◽  
...  

The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and a wide range of BP-related quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus.


2021 ◽  
Author(s):  
◽  
David T. Ashton

<p>Characterizing the genome and understanding how it influences phenotypic variation is a central goal for studies on evolution. The findings of genomic research are applicable to a wide range of human endeavours, including predicting disease risk, supporting selective breeding programmes, and understanding adaptive variation in natural populations. One industry that could particularly benefit from this knowledge is Aquaculture. In recent years, aquaculture production has been increasing to offset the production limits of wild fisheries. Genomics can be used in aquaculture to quantify variation of captive populations, reconstruct pedigrees, and improve the gains from selective breeding programs. The overall goal of this thesis research was to generate a genome-wide genotyping dataset and investigated several key traits for Australasian snapper (Chrysophrys auratus or Pagrus auratus). The findings will be used to establish one of the first genomics-informed New Zealand aquaculture programmes and provide a better understanding of the genotype-phenotype relationships in this teleost species.  The first two chapters of this thesis provide a review of the literature and establish the background information and context for the research in subsequent data chapters. A brief overview of genomics, fisheries and aquaculture, and the intersection of these two fields are provided in the Chapter 1. An in-depth quantitative review of 146 Quantitative Trait Loci (QTL) studies in teleost fish was then carried out in Chapter 2.  Chapter 3 provides details about the study population and the collection of genotyping data. Genotyping-By-Sequencing (GBS) was used to generate 11K Single Nucleotide Polymorphism (SNP) markers for individuals in the three generation pedigree. Together with phenotypic data the genotyping was used to reconstruct the pedigree, measure inbreeding, and estimate heritability for a range of traits. Parents were identified for 93% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent to the subsequent generations. The average inbreeding level did not change between generations, but significantly different inbreeding levels were observed between offspring from the two founding cohorts and as a result full and half sibling crosses within the group spawning teleost species. Heritability was estimated for a range of traits using both a pedigree relatedness matrix and a genomic relatedness matrix.  Chapter 4, uses the genotyping and phenotyping data to generate a linkage map and carry out a scan for quantitative trait loci (QTLs) associated with growth rate. The linkage map reported in this thesis is one of the highest density maps for any Sparidae species at the time of writing. It contained 24 linkage groups, which represent the 24 snapper chromosomes. Growth QTLs were found on three linkage groups and a scan of available genome data identified three candidate growth genes nearby on the linkage groups.  Chapter 5, uses the genotyping data and images collected during the study to characterize snappers blue spots and search for QTLs associated with spot numbers. QTLs were found on 12 of the 24 linkage groups, of which one was consistent between two QTL methods applied. A scan of available genome data identified the tyrosinase gene in the middle of the putative QTL region, which is a causal gene for iridophore cell numbers that form blue spots in other fish species.  Chapter 6, discuss the implications, future directions, and application of this research to the snapper breeding programme.</p>


Sign in / Sign up

Export Citation Format

Share Document