A Note on Confidence Intervals and Model Specification
Empirical research in marketing often is, at least in parts, exploratory. The goal of exploratory research, by definition, extends beyond the empirical calibration of parameters in well established models and includes the empirical assessment of different model specifications. In this context researchers often rely on the statistical information about parameters in a given model to learn about likely model structures. An example is the search for the 'true' set of covariates in a regression model based on confidence intervals of regression coefficients. The purpose of this paper is to illustrate and compare different measures of statistical information about model parameters in the context of a generalized linear model: classical confidence intervals, bootstrapped confidence intervals, and Bayesian posterior credible intervals from a model that adapts its dimensionality as a function of the information in the data. I find that inference from the adaptive Bayesian model dominates that based on classical and bootstrapped intervals in a given model.