target classification
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 201)

H-INDEX

26
(FIVE YEARS 5)

Author(s):  
Yan Xiang ◽  
Zhengtao Yu ◽  
Junjun Guo ◽  
Yuxin Huang ◽  
Yantuan Xian

Opinion target classification of microblog comments is one of the most important tasks for public opinion analysis about an event. Due to the high cost of manual labeling, opinion target classification is generally considered as a weak-supervised task. This article attempts to address the opinion target classification of microblog comments through an event graph convolution network (EventGCN) in a weak-supervised manner. Specifically, we take microblog contents and comments as document nodes, and construct an event graph with three typical relationships of event microblogs, including the co-occurrence relationship of event keywords extracted from microblogs, the reply relationship of comments, and the document similarity. Finally, under the supervision of a small number of labels, both word features and comment features can be represented well to complete the classification. The experimental results on two event microblog datasets show that EventGCN can significantly improve the classification performance compared with other baseline models.


2022 ◽  
Vol 32 (1) ◽  
pp. 73-85
Author(s):  
Anum Aleem ◽  
Samabia Tehsin ◽  
Sumaira Kausar ◽  
Amina Jameel

2021 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Xin Yao ◽  
Xiaoran Shi ◽  
Yaxin Li ◽  
Li Wang ◽  
Han Wang ◽  
...  

In the field of target classification, detecting a ground moving target that is easily covered in clutter has been a challenge. In addition, traditional feature extraction techniques and classification methods usually rely on strong subjective factors and prior knowledge, which affect their generalization capacity. Most existing deep-learning-based methods suffer from insufficient feature learning due to the lack of data samples, which makes it difficult for the training process to converge to a steady-state. To overcome these limitations, this paper proposes a Wasserstein generative adversarial network (WGAN) sample enhancement method for ground moving target classification (GMT-WGAN). First, the micro-Doppler characteristics of ground moving targets are analyzed. Next, a WGAN is constructed to generate effective time–frequency images of ground moving targets and thereby enrich the sample database used to train the classification network. Then, image quality evaluation indexes are introduced to evaluate the generated spectrogram samples, with an aim to verify the distribution similarity of generated and real samples. Afterward, by feeding augmented samples to the deep convolutional neural networks with good generalization capacity, the classification performance of the GMT-WGAN is improved. Finally, experiments conducted on different datasets validate the effectiveness and robustness of the proposed method.


2021 ◽  
Author(s):  
Ali Hanif ◽  
Muhammad Muaz ◽  
Azhar Hassan ◽  
Muhammad Adeel

This is a review article discussing the progress in using micro-doppler based features for target classification.


2021 ◽  
Author(s):  
Ali Hanif ◽  
Muhammad Muaz ◽  
Azhar Hassan ◽  
Muhammad Adeel

This is a review article discussing the progress in using micro-doppler based features for target classification.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1537
Author(s):  
Xingxing Zhang ◽  
Shaobo Li ◽  
Jing Yang ◽  
Qiang Bai ◽  
Yang Wang ◽  
...  

In order to improve the accuracy of manipulator operation, it is necessary to install a tactile sensor on the manipulator to obtain tactile information and accurately classify a target. However, with the increase in the uncertainty and complexity of tactile sensing data characteristics, and the continuous development of tactile sensors, typical machine-learning algorithms often cannot solve the problem of target classification of pure tactile data. Here, we propose a new model by combining a convolutional neural network and a residual network, named ResNet10-v1. We optimized the convolutional kernel, hyperparameters, and loss function of the model, and further improved the accuracy of target classification through the K-means clustering method. We verified the feasibility and effectiveness of the proposed method through a large number of experiments. We expect to further improve the generalization ability of this method and provide an important reference for the research in the field of tactile perception classification.


2021 ◽  
Vol 11 (22) ◽  
pp. 10635
Author(s):  
Tongjing Sun ◽  
Jiwei Jin ◽  
Tong Liu ◽  
Jun Zhang

The marine environment is complex and changeable, and the interference of noise and reverberation seriously affects the classification performance of active sonar equipment. In particular, when the targets to be measured have similar characteristics, underwater classification becomes more complex. Therefore, a strong, recognizable algorithm needs to be developed that can handle similar feature targets in a reverberation environment. This paper combines Fisher’s discriminant criterion and a dictionary-learning-based sparse representation classification algorithm, and proposes an active sonar target classification method based on Fisher discriminant dictionary learning (FDDL). Based on the learning dictionaries, the proposed method introduces the Fisher restriction criterion to limit the sparse coefficients, thereby obtaining a more discriminating dictionary; finally, it distinguishes the category according to the reconstruction errors of the reconstructed signal and the signal to be measured. The classification performance is compared with the existing methods, such as SVM (Support Vector Machine), SRC (Sparse Representation Based Classification), D-KSVD (Discriminative K-Singular Value Decomposition), and LC-KSVD (label-consistent K-SVD), and the experimental results show that FDDL has a better classification performance than the existing classification methods.


2021 ◽  
Author(s):  
Yuehan Gu ◽  
Jiahui Tao ◽  
Lipeng Feng ◽  
Hui Wang

Sign in / Sign up

Export Citation Format

Share Document