Native Metal Sulfide Mineralization of Perga Ore Knot (the Ukrainian Shield)

2017 ◽  
Vol 39 (4) ◽  
pp. 77-88
Author(s):  
B. SLOBODYAN ◽  
V. PAVLYSHYN ◽  
S. BONDARENKO ◽  
L. STEPANYUK ◽  
V. SYOMKA ◽  
...  
Author(s):  
Shauket K. Baltybaev ◽  
◽  
Galina V. Ovchinnikova ◽  
Anton B. Kuznetsov ◽  
Irina M. Vasilieva ◽  
...  

In a study based on Pb isotopes, it has been shown that the formation of gold-sulfide mineralization in the Early Proterozoic gabbros of the Northern Ladoga region is associated with different tectonic phases. This conclusion is based on a comparative study of isotopic data for feldspars and lead sulfides in two Early Proterozoic intrusions; Velimäki and Alattu-Päkylä. The investigated intrusions have similar geological settings at the junction of the Svecofennian accretionary complex and the Karelian craton. Both massifs are characterized by manifestations of noble metal sulfide mineralization associated with zones of local shear deformations. The formation of the studied ore massifs is attributed to the Svecofennian and Caledonian tectonic stages. Feldspars of Velimäki intrusion have parameters and model age of Pb significantly older than U-Pb age of zircon (1.9 Ga), although they correspond to the Svecofennian time of magmatic crystallization of gabbro and clinopyroxenites, while sulfide pyrite-pyrrhotite mineralization is associated with gold in these rocks with the Caledonian stage of fluid-thermal processing of the Early Proterozoic magmatic mineral paracenteses. Feldspars and sulfides of the Alattu-Päkylä intrusion have similar lead isotopic parameters and Pb model age (~ 2 Ga), also somewhat older than the U-Pb age of zircon, but at the same time indicating the formation of rock-forming and ore sulfide associations with gold during the Svecofennian (Early Proterozoic) plutonic and tectonic-thermal events. The source of lead sulfides of the Velimäki massif is characterized by the parameters of the upper crust with high µ2 = 238U / 204Pb, while the µ2 parameter of the minerals of the Alattu-Päkylä massif is slightly lower, which indicates the participation of the mantle-lower crustal reservoir material in the formation of magma.


2021 ◽  
Author(s):  
N. Hayward ◽  
J. M. Magnall ◽  
M. Taylor ◽  
R. King ◽  
N. McMillan ◽  
...  

Abstract Divergent genetic models have been proposed for clastic dominant (CD-type) massive sulfide Zn-Pb mineralization in the Proterozoic Carpentaria Zn Province. Due to varying degrees of tectonic overprint, it has been difficult to accurately constrain structural and paragenetic timing aspects of the CD-type genetic model, and the most basic timing constraints (syngenetic vs. epigenetic, synextension vs. syninversion) remain debated. The recently discovered Teena Zn-Pb deposit is hosted by an exceptionally well preserved subbasin that permits relative timing relationships to be well defined. Using a combination of geophysical, structural, sedimentological, and petrographic datasets, a new model for subbasin development and syndiagenetic hydrothermal replacement mineralization is developed for the Teena mineral system. At Teena, sulfide mineralization was deposited from lateral fluid flow beneath an impermeable seal several hundred meters below the paleosurface and maximum flood surface, after formation of fine-grained diagenetic pyrite (py1) and dolomite nodules. Sulfide mineralization resulted from syndiagenetic carbonate replacement and pore space cementation where thermochemical sulfate reduction took place. The sulfide mineralization is therefore partly cospatial but not cogenetic with its thick pyritic hanging wall, and its lateral alteration footprint is much smaller than predicted by sedimentary exhalative (SEDEX) models. An additional zone of low-grade Zn-Pb mineralization in the footwall W-Fold Shale Member represents a different style of mineralization not previously reported for Carpentaria CD-type Zn deposits: it is associated with strata-bound lenses of hydrothermal dolomite (HTD) that formed by both replacement and carbonate dissolution and infill, which yielded diverse cavity-infill textures that include coarse-bladed dolomite fans cemented by interstitial sphalerite, dolomite, and quartz. Volumetrically minor Zn mineralization is also present in a fault conduit hydrothermal breccia and in hanging-wall synorogenic vein sets derived by hydrothermal leaching and remobilization of Zn from the underlying mineralized zones. Whereas both the Teena and nearby McArthur River Zn-Pb deposits are located along the northern margin of the 3rd-order Hot Spring-Emu subbasin, they formed in separate 4th-order subbasins in association with local extensional growth faults. Growth fault movement in the Teena subbasin was initiated during deposition of the W-Fold Shale Member and persisted episodically until a weak structural disconformity associated with sedimentary facies regression developed in the Upper HYC unit. Shifting patterns in depocenter location, sedimentary facies development, mineralization, and alteration zonation are attributed to progressive growth and linkage of segments of a regionally anomalous ENE-trending, synsedimentary fault zone. Similar patterns of extensional subbasin development were repeated in other Zn-mineralized subbasins throughout the River supersequence across the northern Carpentaria Zn Province, and formed in response to a short-lived episode of north-northwest–south-southeast regional extension around ca 1640 ± 5 Ma, triggered by far-field subduction events.


2020 ◽  
pp. 399-414
Author(s):  
Omar Dromundo ◽  
Sigfrido Robles ◽  
Thomas Bissig ◽  
Claudio Flores ◽  
Maria del Carmen Alfaro ◽  
...  

Abstract Peñasquito is an Au-Ag-Zn-Pb deposit and currently the principal Au-producing mine in Mexico. It is the most recent major discovery in the historically important Concepción del Oro mining district. Current Au reserves plus historic production at Peñasquito stand at 12.67 Moz, in addition to 527 Moz Ag, 3,600 lb Pb, and 8,000 lb Zn in remaining proven and probable reserves. Mineralization is centered on the Peñasco and Brecha Azul diatreme breccias, which cut an Upper Jurassic to Upper Cretaceous marine carbonate-dominated sedimentary sequence, which underwent folding during the Laramide orogeny. The diatreme breccias and associated mineralization are associated with early Oligocene quartz-feldspar porphyries dated at 34.4 ± 0.4 to 33.7 ± 0.4 Ma and thus 3 to 10 m.y. younger than the other skarn and polymetallic deposits known in the district. The Peñasco diatreme is about 1 km in diameter and hosts epithermal-style disseminated mineralization, whereas the contiguous Cretaceous carbonaceous and calcareous siltstone and interbedded sandstone of the Caracol Formation is the principal host for stockwork and manto-type, massive base metal sulfide mineralization. Skarn-type mineralization is Cu-Zn rich, extends to the current depth of drilling some 2 km below the premine surface, and is hosted by the Jurassic-Cretaceous sequence beneath the Caracol Formation. In addition, weakly developed stockwork Mo (±Cu) mineralization has also been intersected by drilling at depths of nearly 2 km.


2010 ◽  
Vol 19 (1-2) ◽  
pp. 35-54 ◽  
Author(s):  
C. J. Persellin ◽  
J. M. Gregg ◽  
K. L. Shelton ◽  
I. D. Somerville ◽  
E. A. Atekwana

Sign in / Sign up

Export Citation Format

Share Document