A Study on the Basic Characteristics of a Novel Design Active Magnetic Bearing with Permanent Magnet Bias Flux

2011 ◽  
Vol 131 (8) ◽  
pp. 1000-1006
Author(s):  
Nobuyuki Kurita ◽  
Keisuke Ohshio ◽  
Takeo Ishikawa
2013 ◽  
Vol 198 ◽  
pp. 451-456 ◽  
Author(s):  
Rafał P. Jastrzębski ◽  
Alexander Smirnov ◽  
Katja Hynynen ◽  
Janne Nerg ◽  
Jussi Sopanen ◽  
...  

This paper presents the practical results of the design analysis, commissioning, identification, sensor calibration, and tuning of an active magnetic bearing (AMB) control system for a laboratory gas blower. The presented step-by-step procedures, including modeling and disturbance analysis for different design choices, are necessary to reach the full potential of the prototype in research and industrial applications. The key results include estimation of radial and axial disturbance forces caused by the permanent magnet (PM) rotor and a discussion on differences between the unbalance forces resulting from the PM motor and the induction motor in the AMB rotor system.


Author(s):  
Ross W. Overstreet ◽  
George T. Flowers ◽  
Gyorgy Szasz

Abstract Magnetic bearings provide rotor support without direct contact. There is a great deal of current interest in using magnetic bearings for active vibration control. Conventional designs use electrical current to provide the bias flux, which is an integral feature of most magnetic bearing control strategies. Permanent magnet biased systems are a relatively recent innovation in the field of magnetic bearings. The bias flux is supplied by permanent magnets (rather than electrically) allowing for significant decreases in resistance related energy losses. The use of permanent magnet biasing in homopolar designs results in a complex flux flow path, unlike conventional radial designs which are much simpler in this regard. In the current work, a design is developed for a homopolar permanent magnet biased magnetic bearing system. Specific features of the design and results from experimental testing are presented and discussed. Of particular interest is the issue of reduction of flux leakage and more efficient use of the permanent magnets.


2011 ◽  
Vol 383-390 ◽  
pp. 5529-5535
Author(s):  
Ming Zong ◽  
Xiao Kang Wang ◽  
Yang Cao

PM (Permanent Magnet) biased magnetic bearing with PM to replace the magnetic field produced by electromagnet an Active Magnetic Bearing generated static bias magnetic field, it can reduce the power consumption of power amplifier to reduce the number of turns of magnet safety, reduce the volume of magnetic bearings, reducing electromagnetic coil operating current, thereby reducing the power amplifier power control system and heat sink size, magnetic bearings significantly reduce power loss, and fundamentally reduce the cost of bearing. In this paper, a kind of PM biased magnetic bearings, describes its structure and working principle, derived a mathematical model of magnetic bearing and magnetic circuit of PM biased magnetic bearings are calculated, given the specific PM biased magnetic bearing size and accordingly calculate the parameters of magnetic bearings. A magnetic model constructed using Simulink simulation method, and constructed using this method, magnetic bearing specific mathematical model simulation results show that the rotor position in the balance, X and Y decoupling between the control winding, while the deviation from equilibrium position time, X and Y control coupling between the windings, the simulation results and the calculation results.


2011 ◽  
Vol 2011.19 (0) ◽  
pp. 93-94
Author(s):  
Hironari Suzuki ◽  
Kenichi Matsuda ◽  
Yohji Okada ◽  
Tomoya Takenaka

Sign in / Sign up

Export Citation Format

Share Document