scholarly journals Determination of parameters and performance analysis of load models for fluorescent recessed lightings before power supply signal variations

DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 163-173
Author(s):  
Alejandra Martínez Peñaloza ◽  
Luisa Carrillo-Sandoval ◽  
Gabriel Malagón-Carvajal ◽  
César Duarte-Gualdrón ◽  
German Alfonso Osma Pinto

The high utilization of nonlinear devices in buildings increases harmonic distortion in the electrical voltage and current signals, which has led to the requirement of characterizing and predicting the impact of such devices on low-voltage networks using load models. One of the charges that still performs an important role in the energy consumption of commercial, industrial, and educational buildings is the recessed fluorescent light with electronic ballast, which is commonly used in Colombia. However, information regarding the modeling of their behavior in the case of distorted power supply voltages is scarce. Therefore, this work presents the parameter configuration and performance analysis of two load models in the time domain, i.e., ZIP and exponential, and one model in the frequency domain, i.e., Norton equivalent model to the coupled admittance matrix method, for two commonly used recessed fluorescent lights.

2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 917
Author(s):  
Jean-Christophe CREBIER ◽  
Theo LAMORELLE ◽  
Silvain MARACHE ◽  
Thanh Hai PHUNG ◽  
Van-Sang NGUYEN ◽  
...  

The paper deals with arrays of numerous power conversion cells, associated in series and/or in parallel to build larger step up or step down direct current (DC)/DC isolated converters. The work focuses on the impact of the spread and distribution of the conversion cell characteristics on the characteristics and performance of the power converter array (PCA). Based on a characterization protocol, about 130 conversion standard cells (CSC) are characterized and classified from a statistical point of view. Three families are defined and representatives are chosen and implemented in various configurations, in open and closed loop control, to analyze the impact of their spread characteristic over the global converter, the PCA. The paper is based on an extended practical set up and protocols, all described in details. Guidelines on CSCs implementation with respect to their dispersion are provided at the end on the paper.


2013 ◽  
Vol 448-453 ◽  
pp. 1988-1993
Author(s):  
Ji Zhong Wang ◽  
Chao Nan Tong ◽  
Rui Li

Based on the synchronous machine in AC-DC-AC Frequency speed drag System, a new power supply method of phase shifting combination is proposed by a detailed study of the impact in the power grid harmonics. With regard to the main Motor drive system of hot-rolling finishing mills, a large number of varying parameters quantitative analysis is made respectively for power load, LC filter, pulse-width modulation circuit and transformer, in which the grid side harmonic rate and waveform distortion rate is focused on. The simulation results show that the power supply method with reasonable parameters design of the drag system can be drastically reduce the grid side harmonic interference that the total harmonic distortion is suppressed within 4.0%. Results of this study provides an effective method for the design of the factory drag system, reactive power compensation system as well as fault diagnosis of electric drag system.


Author(s):  
M. Jawad Ghorbani ◽  
Hossein Mokhtari

This paper investigates the harmonic distortion and losses in power distribution systems due to the dramatic increase of nonlinear loads. This paper tries to determine the amount of the harmonics generated by nonlinear loads in residential, commercial and office loads in distribution feeders and estimates the energy losses due to these harmonics. Norton equivalent modeling technique has been used to model the nonlinear loads. The presented harmonic Norton equivalent models of the end user appliances are accurately obtained based on the experimental data taken from the laboratory measurements. A 20 kV/400V distribution feeder is simulated to analyze the impact of nonlinear loads on feeder harmonic distortion level and losses. The model follows a “bottom-up” approach, starting from end users appliances Norton equivalent model and then modeling residential, commercial and office loads. Two new indices are introduced by the authors to quantize the effect of each nonlinear appliance on the power quality of a distribution feeder and loads are ranked based on these new defined indices. The simulation results show that harmonic distortion in distribution systems can increase power losses up to 20%.


Sign in / Sign up

Export Citation Format

Share Document