scholarly journals Fractures in Volcanic Reservoir: a case study of Zhongguai uplift in Northwestern Margin of Junggar Basin, China

2018 ◽  
Vol 22 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Cunhui Fan ◽  
Qirong Qin ◽  
Feng Liang ◽  
Zenghui Fan ◽  
Zhi Li

Fractures in Carboniferous volcanic rocks located at Zhongguai Area (China) highly influence the accumulation and productivity of oil and gas. As such, the study of development periods and genetic mechanisms of tectonic fractures could throw useful information regarding the evaluation and development of that reservoir. Their tectonic origins caused high-angle and oblique shear fractures. The primary orientation of those fractures appears close to EW (270°±10°), NW (300°±15°), NE (45°±15°), and SN (0°±10°). At least four fracture generations can be found in Carboniferous volcanic rocks at Zhongguai Area. Combined with a tectonic evolution, they are based on the segmentation relationship of the fracture fillings, the thermometry measurement of the fracture filling inclusion, and the acoustic emission, as well. Affected by a new horizontal principal stress, the opening and permeability of nearly EW fractures are the best. In this way, a priority in the development of well's patterns should be considered close to EW fractures. The pressure change in the process of exploitation may damage the reservoir permeability of fractured volcano rocks severely. Accordingly, well patterns should be adjusted to dynamic changes of permeability happened during the oilfield development since some differences have been detected in distinct fracture sets. 

2018 ◽  
Vol 6 (2) ◽  
pp. T431-T447 ◽  
Author(s):  
Xiaoming Sun ◽  
Siyuan Cao ◽  
Xiao Pan ◽  
Xiangyang Hou ◽  
Hui Gao ◽  
...  

Volcanic reservoirs have been overlooked for hydrocarbon exploration for a long time. Carboniferous volcanic rocks of the Zhongguai paleouplift contain proven reserves of [Formula: see text]. We have investigated the volcanic reservoirs integrating cores, well, and seismic data, and the proposed volcanic reservoir distribution is controlled by the weathering function, fractures, and lithology. The weathering process makes the originally tight igneous rocks become good-quality reservoirs, and fractures play an important role in connecting different types of pores and act as reservoir space. Isolated and ineffective pores become effective ones due to connection among fractures. Only volcanic breccia can be good-quality reservoirs without any weathering function. The nonlinear chaos inversion controlled by weathered layers shows that the good-quality reservoirs are distributed in the top of the weathering crust and the structural high. Furthermore, fluid-detection attributes and background information prove that oil and gas are distributed along the paleostructural high. The objectives of this study were to (1) describe the characteristics of volcanic reservoirs and determine the controlled rules for reservoir distribution, (2) characterize the distribution of reservoirs and hydrocarbon, and (3) propose an effective workflow for hydrocarbon exploration in volcanic rocks combining geologic and geophysical methods.


2019 ◽  
Vol 4 (5) ◽  
pp. 267-278 ◽  
Author(s):  
Deyu Gong ◽  
Yueqian Zhang ◽  
Wenjian Guo ◽  
Rui Qi ◽  
Shan Lu ◽  
...  

2021 ◽  
Vol 36 (5) ◽  
pp. 105-119
Author(s):  
Masab Ali ◽  
Bian Weihua ◽  
Yang Kaikai ◽  
Muhammad Sabeh Khan Panni

Junggar Basin is one of the largest sedimentary basins in Northwest China. Carboniferous oil and gas fields have been found in different areas in the eastern part of the Junggar Basin on a large scale, indicating that the Carboniferous rocks of the Junggar Basin have a huge potential for oil and gas exploration. This study focuses on the Batamayineishan Formation in the eastern part of the Junggar Basin, which contains volcanic rocks and pyroclastic rocks, aiming to investigate the reservoir characteristics and to identify the formation mechanism of the rocks of this formation. The majority of the existent reservoir space in the volcanic rocks of the Batamayineishan Formation is dominated by secondary pores and fractures. Using the methods of petrography, pressure-controlled mercury injection (PMI), and electron probe microanalysis (EPMA), the reservoir characteristics and diagenetic history of the volcanic rocks of the Batamayineishan Formation in the Shuangjingzi area were studied. A theoretical framework is established to provide favorable guidance for exploring Carboniferous volcanic rocks in the Junggar Basin. The results of mercury injection indicate that the average pore throat radius and porosity of the volcanic rocks are 0.068 µm and 6.62%, respectively. Permeability remains stable and does not show a significant change with an increase in porosity. Despite the high porosity, the permeability is relatively low, reflecting isolated and non-connected primary pores. The average value of permeability is relatively low (0.424×10-3 µm2), which typically suggests narrow micro-throats. Primary gas pores fill and develop amygdales on a large scale. In addition, the dissolution pores developed by dissolution and alteration also compensated for the decrease in the original gas pore volume.


2014 ◽  
Vol 962-965 ◽  
pp. 393-396
Author(s):  
Wei Zhang ◽  
Hai Tao Wang ◽  
Guo Bin Wang ◽  
Yue Zhi Wang

The northwestern margin of Junggar Basin is one of the most prolific petroliferous areas in Junggar Basin. While there exists many drilling problems, such as poor drillability, low drilling penetration rate (ROP) and long drilling cycle time due to the complex lithology and pressure system in low formation, big pressure change, several sets of coexisted formation pressure system of northwestern margin. In order to improve ROP, make better use of resources and solve these drilling problems, utilizing the TorkBuster Torsion Compactor (TorkBuster) with personalized PDC bit has been introduced in the northwestern margin. This paper presented the workings, technology characteristics and experimental application of TorkBuster in Ma13(M) well areas. The application results showed that the speedup effect of this drilling tool was obvious and drilling cycle time was shortened substantially. The technology has provided a fast and effective drilling method for Karamay Formation and Wuerhe Formation of Triassic in northwestern margin of Junggar Basin.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6114
Author(s):  
Danping Zhu ◽  
Xuewei Liu ◽  
Shaobin Guo

The Hong-Che Fault Zone is one of the important oil and gas enrichment zones in the Junggar Basin, especially in the Carboniferous. In recent five years, it has been proven that the Carboniferous volcanic rock has 140 million tons of oil reserves, and has built the Carboniferous volcanic reservoir with a capacity of million tons. Practice has proven that the volcanic rocks in this area have great potential for oil and gas exploration and development. To date, Carboniferous volcanic reservoirs have been discovered in well areas such as Che 32, Che 47, Che 91, Chefeng 3, Che 210, and Che 471. The study of drilling, logging, and seismic data shows that the Carboniferous volcanic reservoirs in the Hong-Che Fault Zone are mainly distributed in the hanging wall of the fault zone, and oil and gas have mainly accumulated in the high part of the structure. The reservoirs are controlled by faults and lithofacies in the plane and are vertically distributed within 400 m from the top of the Carboniferous. The Carboniferous of the Hong-Che Fault Zone has experienced weathering leaching and has developed a weathering crust. The vertical zonation characteristics of the weathering crust at the top of the Carboniferous in the area of the Che 210 well are obvious. The soil layer, leached zone, disintegration zone, and parent rock developed from top to bottom. Among these reservoirs, the reservoirs with the best physical properties are mainly developed in the leached zone. Based on a comprehensive analysis of the Carboniferous oil and gas reservoirs in areas of the Chefeng 3 and Che 210 wells, it is believed that the formation of volcanic reservoirs in the Hong-Che Fault Zone was mainly controlled by structures and was also controlled by lithofacies, unconformity surfaces, and physical properties.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Sarmistha R. Majumdar

Fracking has helped to usher in an era of energy abundance in the United States. This advanced drilling procedure has helped the nation to attain the status of the largest producer of crude oil and natural gas in the world, but some of its negative externalities, such as human-induced seismicity, can no longer be ignored. The occurrence of earthquakes in communities located at proximity to disposal wells with no prior history of seismicity has shocked residents and have caused damages to properties. It has evoked individuals’ resentment against the practice of injection of fracking’s wastewater under pressure into underground disposal wells. Though the oil and gas companies have denied the existence of a link between such a practice and earthquakes and the local and state governments have delayed their responses to the unforeseen seismic events, the issue has gained in prominence among researchers, affected community residents, and the media. This case study has offered a glimpse into the varied responses of stakeholders to human-induced seismicity in a small city in the state of Texas. It is evident from this case study that although individuals’ complaints and protests from a small community may not be successful in bringing about statewide changes in regulatory policies on disposal of fracking’s wastewater, they can add to the public pressure on the state government to do something to address the problem in a state that supports fracking.


Sign in / Sign up

Export Citation Format

Share Document