scholarly journals Relación entre el peso freco y el peso seco del rastrojo de maíz en diferentes estados fenológicos del cultivo.

2016 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
M. Bänziger ◽  
G. O. Edmeades ◽  
J. Bolaños

The amount of dry matter produced during various stages of corn growth is a important variable to be taken into consideration. However, the lack of drying facilities makes its measurement a difficult task in the fields. A simple method to convert the fresh weight of a crop in the field into dry weight, could be an answer to that problem. In this study, we calculated the relationship between fresh and dry weight of corn stovers, over several, growth, stages of eight corn cultivars of different vigour and maturity period, at two Mexican locations. The differences between cultivars were for percent stover dry weight (%SDW) most evident in the second half of the grain growth stage, when late cultivars showed less humidity than the early ones. The % SDW was regressed against the phenological developmental stage and expressed as a ratio against antesis (R, days to sampling /days to 50% antesis). The equations (R2 = 0.97 - 0.99) with best results were: Early maturing cultivars: %SDW = 12.6 + 0.94R2 + 1.68R4; Late: %SDW = 16.1 - 4.00 R2 + 3.36R4. There were no consistant differences among cultivars with different vigour levels, even though certain differences were noted among the locations and they were attributed to differences in relative humidity. We describe a protocol for determining the dry weight of corn stover by area unit (t/ha) when drying conditions are not available, by utilizing only a scale and a ruler.We also suggest a method to calculate percent dry matter for a real plant parts (including grain).

1997 ◽  
Vol 37 (1) ◽  
pp. 83 ◽  
Author(s):  
P. J. Hocking ◽  
P. J. Randall ◽  
D. De Marco ◽  
I. Bamforth

Summary. Field trials were conducted over 2 seasons at Greenethorpe and Canowindra in the Cowra region of New South Wales to develop and calibrate plant tests for assessing the nitrogen (N) status of canola (Brassica napus). Plants were tested at 3 and 7 growth stages up to the start of flowering at Greenethorpe and Canowindra, respectively. The petiole of the youngest mature leaf (YML) was the most suitable plant part to sample for tests based on nitrate-N. Suitable plant parts for tests based on total N were the YML petiole or lamina, or the whole shoot. There was good agreement between the 2 sites in the just-adequate fertiliser N rates (rates giving 90% of maximum yield) and the critical N concentrations in the plant parts tested. Critical nitrate-N concentrations in the fresh YML petiole for dry matter production at the time of sampling the plants decreased from 1.62 to 0.14 mg nitrate-N/g fresh weight between the 4–5 leaf rosette stage (4–5 RS) and the start of flowering (SF). Critical nitrate-N concentrations in the dry YML petiole decreased from 16.5 to 0.8 mg/g dry weight between 4–5 RS and SF. Critical total N concentrations decreased from 4.5 to 2.0, 7.2 to 5.0 and 6.2 to 2.8% dry weight, in the YML petiole, YML lamina, and whole shoot, respectively, between 4–5 RS and SF. Critical nitrate-N and total N concentrations for assessing potential seed yield were similar to those for dry matter production at the time of sampling for each of the growth stages. The critical total N concentrations obtained for the YML petiole and lamina, and the whole shoot before the start of stem elongation are likely to be less precise than the critical nitrate-N concentrations in the YML petiole because of the limited response of total N concentrations to increasing rates of fertiliser N. However, total N in the YML petiole or lamina, or in the whole shoot may be a better indicator of N status for plants sampled after the start of stem elongation as nitrate-N concentrations become low and more variable, and it is harder to identify the YML. The decline in critical N concentrations must be taken into account when interpreting the results of plant tests for diagnosing the N status of canola, as sampling needs to correspond to the plant growth stage for which a particular critical N concentration has been obtained.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanullah ◽  
Shah Khalid ◽  
Farhan Khalil ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

AbstractThe dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


1991 ◽  
Vol 116 (6) ◽  
pp. 981-986 ◽  
Author(s):  
F.J.A. Niederholzer ◽  
R.M. Carlson ◽  
K. Uriu ◽  
N.H. Willits ◽  
J.P. Pearson

A study was undertaken to determine the seasonal dynamics of leaf and fruit K content and the influence of tree K status and fruit growth on leaf and fruit K accumulation rates in French prune (Prunus domestics L. cv. d'Agen). Mature trees in a commercial orchard were treated with various rates of K2 SO4. (O to ≈20 kg/tree) in the fall. Fruit dry weight yield per tree at harvest and fruit K content were higher for high-K trees, but fruit percent K (by dry weight) was ≈1.0% for all trees. Leaf scorch and subsequent abscission severely reduced the canopy of K-deficient trees. Significant positive linear relationships between leaf and fruit K accumulation rates existed for the periods of 28 Apr.-28 May (May) and 28 May-7 July (June). A significant negative linear relationship existed between these two criteria from 7 July-3 Aug. (July). May (0.237 mg K per fruit-day) and July (0.267 mg K per fruit-day) mean fruit K accumulation rates were similar, but both were significantly higher (P = 0.001) than those for June (0.140 mg K per fruit-day). Mean leaf K accumulation rates for May (- 0.007 mg K per leaf-day) and July (-0.010 mg K per leaf-day) were similar, but both were significantly (P = 0.001) less than for June (0.005 mg K per leaf-day). Potassium per fruit accumulation was highest in trees with highest K status. Periods of net leaf K efflux and influx did not precisely correlate with fruit growth stages measured by fruit dry weight. The period of lowest fruit K accumulation (28 May-7 July) coincided with the period of maximum dry matter accumulation by the kernel. After 7 July, all increases in fruit dry weight and K content were due to mesocarp growth.


1989 ◽  
Vol 16 (3) ◽  
pp. 265 ◽  
Author(s):  
TL Setter ◽  
H Greenway ◽  
T Kupkanchanakul

Submergence of rice in water at low CO2 concentrations was studied in phytotron experiments using plants in the 3rd to 4th leaf stage. Cultivars known to differ in tolerance to complete submergence were adversely affected by the same mechanisms but to a different degree. Submergence for 4-12 days either reduced dry weight production of the whole plant by 6 to 10 fold or even resulted in a loss of dry weight. Nevertheless, the emerging leaf elongated, and both ethanol insoluble material and protein content increased with time. These increases were associated with translocation of dry matter and nitrogen from expanded to expanding leaves. Submergence also reduced concentrations of soluble sugars and starch in all plant parts by 4 to 12 fold. In contrast, concentrations of potassium and free amino acids in shoots were either the same or, in the case of the emerging leaf, higher than in plants which were not submerged. These results indicate (i) these solutes were not limiting growth and (ii) the tissues retained their semipermeability to these solutes during submergence. Insufficient capacity of root metabolism in submerged plants was indicated by low rates of respiration, which persisted in the presence of glucose, and by a low ability to consume ethanol. A model is presented on the adverse effects of submergence of rice which considers possible interactions between CO2, low O2 and high ethylene concentrations.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Pedro Brás de Oliveira ◽  
Maria José Silva ◽  
Ricardo B. Ferreira ◽  
Cristina M. Oliveira ◽  
António A. Monteiro

In a 2-year experiment (1994 and 1995), plants of primocane-fruiting red raspberry cultivar ‘Autumn Bliss’ grown in a plastic greenhouse were destructively harvested at different growth stages to determine the effect of pruning date and cane density on dry matter distribution, carbohydrate concentration, and soluble protein concentration in different plant parts. Three summer-pruning dates (early, mid, and late July) and four cane densities (8, 16, 24, and 32 canes/m row) were imposed. Relative root biomass decreased from pruning to first flower stage and remained constant thereafter for all pruning dates. Earlier pruning dates corresponded to earlier fruit production, but yield was significantly reduced on later pruning dates and higher cane densities. Sucrose concentration was higher in fine roots than in suberized roots and had a slight decrease during flowering and the beginning of harvest. Soluble protein concentrations did not differ significantly between pruning dates. Reserve carbohydrates in the root system were unaffected by pruning and cane density, and were rapidly used during active vegetative growth, began to recover just after bloom, and were fully recovered at the end of the season. Our experiment suggested that in red raspberry plants grown under poor environmental conditions, current yield is reduced but there is enough carbohydrate accumulation to support next year's growth.


1954 ◽  
Vol 5 (3) ◽  
pp. 356 ◽  
Author(s):  
WM Hutton ◽  
JW Peak

Induced autotetraploidy in the Dwalganup variety of subterranean clover (Trifolium subterraneum L.) resulted in total dry weight increases of 60 and 65.5 per cent. at flowering and maturity respectively. In the other four varieties the tetraploids had decreased yields of dry matter compared with the diploids, although the decreases for leaf weights at flowering were nonsignificant in Mount Barker and Tallarook, as was the total dry weight reduction in Tallarook at maturity. There were no significant differences between the diploids and tetraploids in percentage moisture content. When early development was stimulated by growth in a glass-house, the tetraploids of all varieties showed a significant increase in yield of green matter. The level of increased growth was maintained only in Dwalganup, and decreased in other varieties during flowering. An analysis was made of the way in which the different plant parts mere changed by tetraploidy. Where decreased growth occurred, the leaves and stems were coarser. In all varieties a reduced seed-setting followed autotetraploidy, although in Dwalganup the yield of seed per plant was not affected.


1977 ◽  
Vol 57 (1) ◽  
pp. 65-73 ◽  
Author(s):  
F. W. CALDER ◽  
J. E. LANGILLE ◽  
J. W. G. NICHOLSON

An experiment was conducted in 3 consecutive yr with corn grown each year on a field from which silage was made of corn harvested at different dates before and after freezing. Yields of green and dry weight were recorded at each harvest. Individual whole plants and plant parts were evaluated for dry matter (DM), total nitrogen, total available carbohydrates and in vitro digestibility of DM. Animal gains, feed consumption and carcass grades were determined by feeding the silages to yearling Hereford steers and DM digestibility determined with sheep. The total yield and contribution of the ear increased from the first to the second harvesting date. The in vivo digestibility of DM of the silages declined between the second and final harvests in all years as did animal gain in years 1 and 3. The in vitro digestibility appeared to underestimate the effect of frost on the in vivo digestibility of silage made with corn. When the silages were fed to steers, they consumed more dry matter per day from that harvested on the intermediate date than from either the early or late date. Higher carcass grades occurred when the steers were fed corn harvested at the intermediate dates. The results of these experiments show clearly that corn which has been heavily frozen will loose dry matter and feeding value if left standing in the field for a period of time; however, corn harvested soon after freezing is not as seriously affected.


2003 ◽  
Vol 51 (3) ◽  
pp. 267-280 ◽  
Author(s):  
Y. S. Shivay ◽  
J. H. Chen ◽  
S. R. Ding

A field experiment was carried out to study the effect of K nutrition and genotypic variation on the dry matter (DM) accumulation, and the K concentration, accumulation, uptake and utilization efficiency in barley (Hordeum vulgare L.). Successive increases in potassium nutrition had a significant effect on the dry matter and K accumulation either in the total or in various plant parts of barley at the tillering, stem elongation, heading and maturity growth stages. K nutrition also led to significantly higher grain yield with each unit K application than without K application. The yield increase due to K application was mainly due to the improvement in spike development from tillers. Dry matter and K accumulation in various plant parts varied significantly between genotypes at the main growth stages. Among the various plant parts, the stem contained the highest K concentration, had the highest K accumulation at maturity and changed considerably with the K level, while other plant parts remained relatively unchanged. Among the eleven genotypes, genotype 98-6 had the highest grain yield and the K use efficiency of this genotype was 10.4 kg grain per kg K applied. It could thus be used as a breeding line to breed barley varieties for higher productivity under rainfed conditions with low available soil potassium.


1976 ◽  
Vol 86 (1) ◽  
pp. 49-56 ◽  
Author(s):  
A. Hamid ◽  
O. Talibudeen

SUMMARYThe effect of soil salinity (ECe range 2–9 mmhos/cm) on the growth of and ion uptake by barley, sugar beet and broad beans (crops increasingly sensitive to salinity) was investigated in a glasshouse experiment.Barley and sugar-beet yields benefited from the added Na in the soil but broad beans were always adversely affected. Changes in growth and ion uptake are discussed in terms of Na:K synergism and antagonism.Sodium:potassium antagonism was observed in barley just after germination, and in sugar beet throughout growth, but not in barley at other growth stages nor in broad beans. Greater Na uptake promoted increases in dry-matter yields of all plant parts with barley and sugar beet, indicating that Na played a specific role in their metabolism. In sugar-beet roots, sugar concentrations and dry-matter yields increased with added Na by half as much more than without added Na, suggesting that Na is an essential nutrient.We conclude from our experiments that the effects of salinity caused by Na salts when water is not limiting, is related not only to plant species but also to their stages of growth.


Sign in / Sign up

Export Citation Format

Share Document