Effects of Al and O Content on Transformation from SiAlCO to Si(Al)C Fibers after High Temperature Treatment

2016 ◽  
Vol 31 (4) ◽  
pp. 393 ◽  
Author(s):  
YUAN Qin ◽  
SONG Yong-Cai
2020 ◽  
Vol 225 ◽  
pp. 106862 ◽  
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Jiawei Liu ◽  
Qian Yin ◽  
Hongwen Jing ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1695-1700 ◽  
Author(s):  
A. Murillo-Williams ◽  
G. P. Munkvold

Fusarium verticillioides causes seedling decay, stalk rot, ear rot, and mycotoxin contamination (primarily fumonisins) in maize. Systemic infection of maize plants by F. verticillioides can lead to kernel infection, but the frequency of this phenomenon has varied widely among experiments. Variation in the incidence of systemic infection has been attributed to environmental factors. In order to better understand the influence of environment, we investigated the effect of temperature on systemic development of F. verticillioides during vegetative and reproductive stages of plant development. Maize seeds were inoculated with a green fluorescent protein-expressing strain of F. verticillioides, and grown in growth chambers under three different temperature regimes. In the vegetative-stage and reproductive-stage experiments, plants were evaluated at tasseling (VT stage), and at physiological maturity (R6 stage), respectively. Independently of the temperature treatment, F. verticillioides was reisolated from nearly 100% of belowground plant tissues. Frequency of reisolation of the inoculated strain declined acropetally in aboveground internodes at all temperature regimes. At VT, the high-temperature treatment had the highest systemic development of F. verticillioides in aboveground tissues. At R6, incidence of systemic infection was greater at both the high- and low-temperature regimes than at the average-temperature regime. F. verticillioides was isolated from higher internodes in plants at R6, compared to stage VT. The seed-inoculated strain was recovered from kernels of mature plants, although incidence of kernel infection did not differ significantly among treatments. During the vegetative growth stages, temperature had a significant effect on systemic development of F. verticillioides in stalks. At R6, the fungus reached higher internodes in the high-temperature treatment, but temperature did not have an effect on the incidence of kernels (either symptomatic or asymptomatic) or ear peduncles infected with the inoculated strain. These results support the role of high temperatures in promoting systemic infection of maize by F. verticillioides, but plant-to-seed transmission may be limited by other environmental factors that interact with temperature during the reproductive stages.


1981 ◽  
Vol 23 (4) ◽  
pp. 265-267
Author(s):  
O. V. Abramov ◽  
A. I. Il'in ◽  
V. M. Kardonskii

2003 ◽  
Vol 10 (01) ◽  
pp. 55-63 ◽  
Author(s):  
M. DIANI ◽  
J. DIOURI ◽  
L. KUBLER ◽  
L. SIMON ◽  
D. AUBEL ◽  
...  

In 6H- or 4H-SiC(0001) surface technology, a Si-rich 3 × 3 reconstruction is usually first prepared by heating at 800°C under Si flux, and two other most stable [Formula: see text] or [Formula: see text] reconstructions are obtained by further extensive annealing at higher temperatures ranging between 900 and 1250°C. The 3 × 3 Si excess is thus progressively depleted up to a graphitized C-rich surface. By crystallographic (LEED) and chemical surface characterizations (XPS and UPS), we show that all these reconstructions can be obtained at a unique, low formation temperature of 800°C if the Si richness is controlled before annealing. This control is achieved by exposing the 3 × 3 surface to atomic hydrogen at room temperature. This procedure allows one to etch or partially deplete the (3 × 3)-associated Si excess, and make it more comparable to the final Si coverages, required to form the less Si-rich [Formula: see text] or [Formula: see text] reconstructions. After annealing at 800°C, the latter reconstructions are no longer determined by the heating time or temperature but only by the initial Si coverage set by the H doses inducing the low temperature etching. The high temperature treatment, required to remove by sublimation a significant Si amount associated with the Si-rich 3 × 3 reconstruction, is thus avoided. Such a methodology could be applied to other binary systems in the formation of reconstructions that depends on surface richness.


Sign in / Sign up

Export Citation Format

Share Document