meiotic division
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 17)

H-INDEX

35
(FIVE YEARS 1)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Helal A. Ansari ◽  
Nicholas W. Ellison ◽  
Isabelle M. Verry ◽  
Warren M. Williams

Abstract Background Unreduced gametes, a driving force in the widespread polyploidization and speciation of flowering plants, occur relatively frequently in interspecific or intergeneric hybrids. Studies of the mechanisms leading to 2n gamete formation, mainly in the wheat tribe Triticeae have shown that unreductional meiosis is often associated with chromosome asynapsis during the first meiotic division. The present study explored the mechanisms of meiotic nonreduction leading to functional unreduced gametes in an interspecific Trifolium (clover) hybrid with three sub-genomes from T. ambiguum and one sub-genome from T. occidentale. Results Unreductional meiosis leading to 2n gametes occurred when there was a high frequency of asynapsis during the first meiotic division. In this hybrid, approximately 39% of chromosomes were unpaired at metaphase I. Within the same cell at anaphase I, sister chromatids of univalents underwent precocious separation and formed laggard chromatids whereas paired chromosomes segregated without separation of sister chromatids as in normal meiosis. This asynchrony was frequently accompanied by incomplete or no movement of chromosomes toward the poles and restitution leading to unreduced chromosome constitutions. Reductional meiosis was restored in progeny where asynapsis frequencies were low. Two progeny plants with approximately 5 and 7% of unpaired chromosomes at metaphase I showed full restoration of reductional meiosis. Conclusions The study revealed that formation of 2n gametes occurred when asynapsis (univalent) frequency at meiosis I was high, and that normal gamete production was restored in the next generation when asynapsis frequencies were low. Asynapsis-dependent 2n gamete formation, previously supported by evidence largely from wheat and its relatives and grasshopper, is also applicable to hybrids from the dicotyledonous plant genus Trifolium. The present results align well with those from these widely divergent organisms and strongly suggest common molecular mechanisms involved in unreduced gamete formation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xue Jiang ◽  
Xiaoli Zhu ◽  
Yu Cheng ◽  
Muhammad Azhar ◽  
Xuemei Xing ◽  
...  

AbstractIn mammals, germline development undergoes dramatic morphological and molecular changes and is epigenetically subject to intricate yet exquisite regulation. Which epigenetic players and how they participate in the germline developmental process are not fully characterized. Spin1 is a multifunctional epigenetic protein reader that has been shown to recognize H3 “K4me3-R8me2a” histone marks, and more recently the non-canonical bivalent H3 “K4me3-K9me3/2” marks as well. As a robust Spin1-interacting cofactor, Spindoc has been identified to enhance the binding of Spin1 to its substrate histone marks, thereby modulating the downstream signaling; However, the physiological role of Spindoc in germline development is unknown. We generated two Spindoc knockout mouse models through CRISPR/Cas9 strategy, which revealed that Spindoc is specifically required for haploid spermatid development, but not essential for meiotic divisions in spermatocytes. This study unveiled a new epigenetic player that participates in haploid germline development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yared Gutiérrez Pinzón ◽  
José Kenyi González Kise ◽  
Patricia Rueda ◽  
Arnaud Ronceret

During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.


2021 ◽  
Author(s):  
Xiaotian Wang ◽  
Claudia Baumann ◽  
Rabindranath De La Fuente ◽  
Maria M. Viveiros

Oocyte-specific Pericentrin (PCNT) knockdown in transgenic (Tg) mice disrupts acentriolar microtubule organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, MII control (WT) and Tg oocytes were briefly exposed to a specific inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tom Lemonnier ◽  
Enrico Maria Daldello ◽  
Robert Poulhe ◽  
Tran Le ◽  
Marika Miot ◽  
...  

AbstractOocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.


2021 ◽  
Vol 45 (2) ◽  
pp. 177-184
Author(s):  
Yong Chen ◽  
Xiaofeng Wang ◽  
Liang Li ◽  
Chengqi Ao

The formation of integuments, megasporogenesis and megagametogenesis in Dendrobium catenatum, an economically important orchid, are observed. After pollination, mitotic cell divisions of the placental epidermis result in the formation of a branching system of outgrowths. The tip of each branch consists of an archesporial cell derived from the differentiation of the terminal subepidermal nucellar cell. It differentiates directly into a megasporocyte. The first division of the meiosis of the megasporocyte produces a dyad approximately equal in size, in which the micropylar cell promptly degenerates. The second meiotic division of the remaining dyad cell results in the formation of two megaspores of unequal size. The larger chalazal cell becomes functional and eventually develops into a mature megagametophyte. The development of the megagametophyte conforms to the Monosporic Polygonum type. The final arrangement of the mature embryo sac conforms to a sevencelled/ eight-nucleate structure. The mature ovule is bitegmic, tenuinucellate and has an anatropous orientation. In the present study, we also discuss the differences between three main types of embryo sac development and the improvement of section techniques.


Zygote ◽  
2020 ◽  
pp. 1-7
Author(s):  
Tingting Gao ◽  
Meng Lin ◽  
Yangyang Wu ◽  
Kai Li ◽  
Chenchen Liu ◽  
...  

Summary Meiosis is a highly conserved process, and is responsible for the production of haploid gametes and generation of genetic diversity. We previously identified the transferrin receptor (TFRC) in the proteome profile of mice neonatal testes, indicating the involvement of the TFRC in meiosis. However, the exact molecular role of the TFRC in meiosis remains unclear. In this study, we aimed to determine the function of the TFRC in neonatal testicular development by TFRC knockdown using the testis culture platform. Our results showed high TFRC expression in 2-week testes, corresponding to the first meiotic division. Targeting TFRC using morpholino oligonucleotides resulted in clear spermatocyte apoptosis. In addition, we used the chromosomal spread technique to show that a deficiency of TFRC caused the accumulation of leptotene and zygotene spermatocytes, and a decrease of pachytene spermatocytes, indicating early meiotic arrest. Moreover, the chromosomes of TFRC-deficient pachytene spermatocytes displayed sustained γH2AX association, as well as SYCP1/SYCP3 dissociation beyond the sex body. Therefore, our results demonstrated that the TFRC is essential for the progression of spermatocyte meiosis, particularly for DNA double-stranded break repair and chromosomal synapsis.


2020 ◽  
Vol 114 (3) ◽  
pp. e115-e116
Author(s):  
Marga Esbert ◽  
Cristina Garcia ◽  
Georgina Cutts ◽  
Evelin Lara-Molina ◽  
Emre Seli ◽  
...  

2020 ◽  
Author(s):  
Hailey Larose ◽  
Travis Kent ◽  
Qianyi Ma ◽  
Adrienne Niederriter Shami ◽  
Nadia Harerimana ◽  
...  

AbstractAndrogen receptor (AR) signaling in Sertoli cells is known to be important for germ-cell progression through meiosis, but the extent to which androgens indirectly regulates specific meiosis stages is not known. Here, we combine synchronization of spermatogenesis, cytological analyses and single-cell RNAseq (scRNAseq) in the Sertoli cell androgen receptor knockout (SCARKO) mutant and control mice, and demonstrate that SCARKO mutant spermatocytes exhibited normal expression and localization of key protein markers of meiotic prophase events, indicating that initiation of meiotic prophase is not androgen dependent. However, spermatocytes from SCARKO testes failed to acquire competence for the meiotic division phase. ScRNAseq analysis of wild type and SCARKO mutant testes revealed a molecular transcriptomic block in an early meiotic prophase state (leptotene/zygotene) in mutant germ cells, and identified several misregulated genes in SCARKO Sertoli cells, many of which have been previously implicated in male infertility. Together, our coordinated cytological and single-cell RNAseq analyses identified germ-cell intrinsic and extrinsic genes responsive to Sertoli-cell androgen signaling that promotes cellular states permissive for the meiotic division phase.


Cell Division ◽  
2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Tom Lemonnier ◽  
Aude Dupré ◽  
Catherine Jessus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document