Synthesis of aligned carbon nanotubes in organic liquids

2002 ◽  
Vol 17 (9) ◽  
pp. 2457-2464 ◽  
Author(s):  
Yafei Zhang ◽  
Mikka N.-Gamo ◽  
Kiyoharu Nakagawa ◽  
Toshihiro Ando

A simple and novel method was developed for efficient synthesis of aligned multiwalled carbon nanotubes (CNTs) in methanol and ethanol under normal pressure. The CNTs' alignment and structures were investigated using Raman scattering and x-ray diffraction spectroscopy. A unique kind of coupled CNT was synthesized in which one rotated to the left and one rotated to the right. Chains periodically bridged the coupled CNTs. The growth mechanism of the CNTs within organic liquid is proposed to be a catalytic process at the Fe film surface in a dynamic and thermal nonequilibrium condition in organic liquids.

2021 ◽  
Vol 21 (11) ◽  
pp. 5673-5680
Author(s):  
Muthukrishnan Francklin Philips ◽  
Jothirathinam Thangarathinam ◽  
Jayakumar Princy ◽  
Cyril Arockiaraj Crispin Tina ◽  
Cyril Arockiaraj Crispin Tina ◽  
...  

The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V2O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V2O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V2O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V2O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V2O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V2O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V2O5@Se NPs/MWCNTs.


2018 ◽  
Vol 78 (10) ◽  
pp. 2171-2182 ◽  
Author(s):  
Runhua Chen ◽  
Ping Wang ◽  
Meng Li ◽  
Fei Tian ◽  
Jiangjun Xiao ◽  
...  

Abstract In this study, a novel method based on the magnetic Fe/C crosslinked nanoparticles (MNZVI/CNTs-OH) is reported for the effective removal of Cr(VI) in aqueous solutions. Parameters that influence the effectiveness of the nanoparticles, such as pH, temperature, reaction time, and particle dosage, was analyzed. It was found that MNZVI/CNTs-OH particles exhibit significantly higher activity toward Cr(VI) removal than bare NZVI, carbon nanotubes (CNTs), and other synthetic nanomaterials. Under optimized conditions, the removal efficiency of Cr(VI) by MNZVI/CNTs-OH is up to 98% with an initial contaminant concentration of 50 mg/L, and chromium content in the residue up to 48 mg/g. Physical characterizations, including Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and TG-TD measurements, provide insights into the working mechanism of Cr(VI) purification. Our findings suggest that immobilization of MNZVI onto carbon nanotubes increase the covalent bond property, while crosslinked nanoparticles (NPs) provide the electron transfer passage from the NZVI surface and improves the dispersity of the MNZVI, thus enhancing the performance. These results demonstrate the potential of the MNZVI/CNTs-OH nanoparticles for the rapid and efficient treatment of Cr(VI)-containing wastewater.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yan He ◽  
Zhifang Cao ◽  
Lianxiang Ma

A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i) the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii) the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
T. Minh Nguyet Nguyen ◽  
Vinh-Dat Vuong ◽  
Mai Thanh Phong ◽  
Thang Van Le

Molybdenum disulfide (MoS2), an inorganic-layered material similar to structure of graphite, was randomly dispersed onto the surface of functionalized multiwalled carbon nanotubes to synthesized nanocomposite MoS2/CNT. The as-obtained product was characterized via SEM, TEM, TGA, X-ray diffraction, and Raman spectroscopies. It was confirmed from XRD that MoS2 layers with interlayer spacing of 0.614 nm were successfully produced. TEM images and Raman spectra indicated a random distribution of 20 nm sized nanoflake MoS2 on the surface of MWNTs. The electrochemical performance of materials are expected to pave the way for the utilized anode material for lithium-ion batteries.


2009 ◽  
Vol 72 (1) ◽  
pp. 145-151 ◽  
Author(s):  
J. Cambedouzou ◽  
V. Heresanu ◽  
C. Castro ◽  
M. Pinault ◽  
F. Datchi ◽  
...  

2007 ◽  
Vol 46 (9B) ◽  
pp. 6339-6342 ◽  
Author(s):  
Hidenori Gamo ◽  
Takeshi Shibasaki ◽  
Kiyoharu Nakagawa ◽  
Toshihiro Ando ◽  
Mikka Nishitani-Gamo

2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Siu-Ming Yuen ◽  
Chen-Chi M. Ma ◽  
Chin-Lung Chiang ◽  
Chih-Chun Teng

This investigation presents a novel method for modifying multiwalled carbon nanotubes (MWCNTs). The morphology, electrical resistivity, and percolation threshold of MWCNT/Polyimide nanocomposites were studied. Acid-modified MWCNTs reacted with (3-aminopropyl)triethoxysilane by ionic bonding, and were then mixed with polyamic acid via imidization. TEM microphotographs reveal that silane-grafted MWCNTs were connected to each other. The electrical resistivity of silane-grafted MWCNT/polyimide decreased substantially below than that of acid-treated MWCNTs when the silane-modified MWCNT content was lower than 2.4 wt%. The percolation threshold of the MWCNT/polyimide composites is 1.0 wt% for silane-modified MWCNT and exceeds 7.0 wt% for acid-modified MWCNT. The acid-modified MWCNT/polyimide composites possess slightly higher glass transition temperatures than that of pure polyimide. The glass transition temperature of the polyimide increased significantly with silane-modified MWCNT content. Tensile properties of the polyimide have been improved with the MWCNTs content.


2011 ◽  
Vol 467-469 ◽  
pp. 312-315
Author(s):  
Gang Li ◽  
Wen Ming Cheng

Ultra-thin (20 nm) nickel catalyst films were deposited by sputtering on SiO2/Si substrates. At the pretreatments, ammonia (NH3) was conducted for different time in a thermal chemical vapor deposition (CVD) system. Pretreated samples were characterized using atomic force microscopy (AFM). After the pretreatment, acetylene was introduced into the chamber for 10 min, samples were characterized using scanning electron micrograph (SEM) and X-ray diffraction (XRD). It was concluded that NH3 pretreatment was very crucial to control the surface morphology of catalytic metals and thus to achieve the vertical alignment of carbon nanotubes (CNTs). With higher density of the Ni particles, better alignment of the CNTs can be obtained due to steric hindrance effect between neighboring CNTs.


Sign in / Sign up

Export Citation Format

Share Document