VO2(B)/Graphene Forest for High-Rate Li-Ion Battery

2015 ◽  
Vol 1773 ◽  
pp. 7-14
Author(s):  
Guofeng Ren ◽  
Zhaoyang Fan

ABSTRACT2D nanomaterials, when assembled into an ordered macrostructure, will present many great opportunities, including for Li-ion batteries (LIBs). We report densely-packed vertically-aligned VO2(B) nanobelts (NBs)-based forest structure synthesized on edge-oriented graphene (EOG) network. Using a EOG/Ni foam as a 3D scaffold, aligned VO2(B) NBs can be further synthesized into a folded 3D forest structure to construct a freestanding electrode for LIBs. Electrochemical studies found that such a freestanding VO2(B)/EOG electrode, which combines the unique merits of 2D VO2(B) NBs and 2D graphene sheets, has excellent charge-discharge rate performance. A discharge capacity of 178 mAh g-1 at a rate of 59 C and 100 mAh g-1 at 300 C was measured. A good charge-discharge cycling stability under a high current density was also demonstrated. The results indicate VO2(B)/EOG forest based freestanding electrode is very promising for developing high-rate LIBs.

1999 ◽  
Vol 15 (3) ◽  
pp. 225-229 ◽  
Author(s):  
T. Takamura ◽  
J. Suzuki ◽  
C. Yamada ◽  
K. Sumiya ◽  
K. Sekine

Author(s):  
Xiuling Wang

Abstract Li-ion battery is becoming a popular energy storage device in Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) due to its high energy density, high voltage and low self-discharge rate. The major concerns in designing Li-ion batteries are their life, performance and safety, which have close relations to their thermal behaviors. The temperature of Li-ion batteries rises during charge/discharge process. It goes faster especially with high charge/discharge rate during fast charging procedure. In this research, CFD models are developed based on ANSYS/FLUENT MSMD battery model coupled with electrochemical submodel-Newman, Tiedeman, Gu and Kim (NTGK) empirical model. Detailed simulation results are obtained in battery thermal and electrochemical behavior for different bi-cell electrode and current collector tab configurations. The temperature, potential, current density distribution at the battery length scale are determined, temperature gradient distribution is computed, and the maximum temperature at different discharge rate are also compared. The thermal investigation can provide valuable input for Li-ion battery design and analysis, especially for fast-charging batteries where heat distribution and cooling is critical for the battery design.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Sa Li ◽  
Junjie Niu ◽  
Yu Cheng Zhao ◽  
Kang Pyo So ◽  
Chao Wang ◽  
...  

Abstract Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.


2015 ◽  
Vol 3 (18) ◽  
pp. 10038-10044 ◽  
Author(s):  
Tongbin Lan ◽  
Jie Dou ◽  
Fengyan Xie ◽  
Peixun Xiong ◽  
Mingdeng Wei

Ultrathin TiO2-B nanowires with the most open channels exhibited large reversible lithium-ion charge–discharge capacity, excellent cycling stability and high-rate capability.


2012 ◽  
Vol 24 (19) ◽  
pp. 2592-2597 ◽  
Author(s):  
Aurélien Gohier ◽  
Barbara Laïk ◽  
Ki-Hwan Kim ◽  
Jean-Luc Maurice ◽  
Jean-Pierre Pereira-Ramos ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 7018-7024
Author(s):  
Takahiro Yoshinari ◽  
Datong Zhang ◽  
Kentaro Yamamoto ◽  
Yuya Kitaguchi ◽  
Aika Ochi ◽  
...  

A Cu–Au cathode material for all-solid-state fluoride-ion batteries with high rate-capability was designed as new concepts for electrochemical energy storage to handle the physicochemical energy density limit that Li-ion batteries are approaching.


2017 ◽  
Vol 5 (17) ◽  
pp. 8087-8094 ◽  
Author(s):  
Yutao Dong ◽  
Dan Li ◽  
Chengwei Gao ◽  
Yushan Liu ◽  
Jianmin Zhang

Self-assembled 3D urchin-like Ti0.8Sn0.2O2–rGO was fabricated by a one-step hydrothermal process as an anode material for high-rate and long cycle life LIBs.


Sign in / Sign up

Export Citation Format

Share Document