Lead-free solders have garnered much attention in recent years due to legislation banning the use of lead in electronics. As use of lead solders is phased out, there is a need for lead-free alternatives for niche applications such as high temperature environments where traditionally high lead solders are used. Electronics and sensors exposed to high-temperature environments such as those associated with deep well drilling require solder interconnects that can withstand high thermal-mechanical stresses. In an effort to characterize solder alloys for such applications, this study focuses on deformation behavior of the Sn95-Sb5 solder under high-temperature exposures (from 298°K to 473°K). As compared to conventional high-temperature Pb-based solder 90Pb–10Sn, Sn95–Sb5 exhibited very high tensile strength and modulus, as well as superior creep properties despite its lower melting temperature. Importantly, high-temperature deformation was shown to be influenced by the presence of the second phase (SnSb) distributed within the Sn-rich matrix. These second phase precipitates appeared to be dissolved into the Sn-rich phase above 453°K, which converted the solder into a single-phase alloy and resulted in a change in its deformation mechanism. Furthermore, as the service temperature is of such high homologous temperature (T > 0.5Tm), creep deformation will contribute significantly toward the life of the solder joint during thermal cycling. In order to characterize the creep behavior and to identify controlling mechanism(s), creep tests were carried out, from which the stress exponent and activation energy were determined. In this study, detailed microstructures under high-temperature are presented in conjunction with the corresponding mechanical behavior to further understand the controlling deformation mechanisms.