Characterization of Newly Synthesized Novel Graphite Films
ABSTRACTReactions of C5H6 and BCl3 at 800°C yields a metallic graphite-like material of composition BCx (3.0 ≤ x ≤ 4.00) while reactions of BCl3, NH3 and C2 produces a B/C/N graphitic semiconductor of approximate stoichiometry B2CN2. Both materials were shown to be homogeneous using Auger electron spectroscopy and extensively characterized by electron energy-loss spectroscopy. Single loss profiles of the EELS data were obtained using the fourier-log deconvolution method. Compositions were determined using hydrogenic cross-sections. A careful study of the plasmon resonance energies and the fine structures of the core-loss edges of these materials has been invaluable in demonstrating that the boron, carbon and nitrogen atoms are all sp2 hybridized. Therefore, these new materials are in-sheet graphite hybrids and not intercalations.