Collinear Generation of Ultrashort UV and XUV Pulses for Pump/probe Spectroscopy

2009 ◽  
Vol 1230 ◽  
Author(s):  
Elisabeth Bothschafter ◽  
Agustin Schiffrin ◽  
Ferenc Krausz ◽  
Ralph Ernstorfer ◽  
Reinhard Kienberger

AbstractThe collinear generation of sub-4 fs ultraviolet (UV) and attosecond extreme ultraviolet (XUV) pulses via subsequent third-harmonic and high harmonic generation in noble gases is demonstrated. The ultrashort coherent light bursts are produced by focusing a sub-1.5 cycle near-infrared/visible (NIR) laser pulse in two subsequent quasi-static noble gas targets. With this simple approach, inherently synchronized UV pulsed radiation with a photon energy of ˜5 eV and a pulse energy of ˜1 μJ, and XUV pulses with a cut-off photon energy of more than 120 eV and up to ˜107 XUV photons can be generated. This source represents a novel tool for future UV pump/XUV probe experiments with unprecedented time-resolution.

2021 ◽  
Author(s):  
Tobias Witting ◽  
Mikhail Osolodkov ◽  
Felix Schell ◽  
Felipe Morales ◽  
Serguei Patchkovskii ◽  
...  

Abstract The generation of coherent light pulses in the extreme ultraviolet (XUV) spectral region with attosecond pulse durations constitutes the foundation of the field of attosecond science [1]. Twenty years after the first demonstration of isolated attosecond pulses [2], they continue to be a unique tool enabling the observation and control of electron dynamics in atoms, molecules and solids [3, 4]. It has long been identified that an increase in the repetition rate of attosecond light sources is necessary for many applications in atomic and molecular physics [5, 6], surface science [7], and imaging [8]. Although high harmonic generation (HHG) at repetition rates exceeding 100 kHz, showing a continuum in the cut-off region of the XUV spectrum was already demonstrated in 2013 [9], the number of photons per pulse was insufficient to perform pulse characterisation via attosecond streaking [10], let alone to perform a pump-probe experiment. Here we report on the generation and full characterisation of XUV attosecond pulses via HHG driven by near-single-cycle pulses at a repetition rate of 100 kHz. The high number of 106 XUV photons per pulse on target enables attosecond electron streaking experiments through which the XUV pulses are determined to consist of a dominant single attosecond pulse. These results open the door for attosecond pump-probe spectroscopy studies at a repetition rate one or two orders of magnitude above current implementations.


2015 ◽  
Vol 107 (2) ◽  
pp. 021103 ◽  
Author(s):  
Stefan Fischbach ◽  
Andrey V. Gorbach ◽  
Daniele Di Nuzzo ◽  
Enrico Da Como

2019 ◽  
Vol 26 (3) ◽  
pp. 854-867 ◽  
Author(s):  
Georg Schmid ◽  
Kirsten Schnorr ◽  
Sven Augustin ◽  
Severin Meister ◽  
Hannes Lindenblatt ◽  
...  

A reaction microscope dedicated to multi-particle coincidence spectroscopy on gas-phase samples is installed at beamline FL26 of the free-electron laser FLASH2 in Hamburg. The main goals of the instrument are to follow the dynamics of atoms, molecules and small clusters on their natural time-scale and to study non-linear light–matter interaction with such systems. To this end, the reaction microscope is combined with an in-line extreme-ultraviolet (XUV) split-delay and focusing optics, which allows time-resolved XUV-XUV pump–probe spectroscopy to be performed.


Nanophotonics ◽  
2015 ◽  
Vol 4 (3) ◽  
pp. 303-323 ◽  
Author(s):  
Christian Kern ◽  
Michael Zürch ◽  
Christian Spielmann

Abstract High-harmonic generation (HHG) has been established as an indispensable tool in optical spectroscopy. This effect arises for instance upon illumination of a noble gas with sub-picosecond laser pulses at focussed intensities significantly greater than 1012W/cm2. HHG provides a coherent light source in the extreme ultraviolet (XUV) spectral region, which is of importance in inner shell photo ionization of many atoms and molecules. Additionally, it intrinsically features light fields with unique temporal properties. Even in its simplest realization, XUV bursts of sub-femtosecond pulse lengths are released. More sophisticated schemes open the path to attosecond physics by offering single pulses of less than 100 attoseconds duration. Resonant optical antennas are important tools for coupling and enhancing electromagnetic fields on scales below their free-space wavelength. In a special application, placing field-enhancing plasmonic nano antennas at the interaction site of an HHG experiment has been claimed to boost local laser field strengths, from insufficient initial intensities to sufficient values. This was achieved with the use of arrays of bow-tie-shaped antennas of ∼ 100nm in length. However, the feasibility of this concept depends on the vulnerability of these nano-antennas to the still intense driving laser light.We show, by looking at a set of exemplary metallic structures, that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.We present our findings in the context of work done by other groups, giving an assessment of the feasibility and effectiveness of the proposed scheme.


2021 ◽  
Author(s):  
Jan Troß ◽  
Shashank Pathak ◽  
Adam Summers ◽  
Dimitrios Rompotis ◽  
Benjamin Erk ◽  
...  

Abstract We present the results of an experiment investigating the generation of high-order harmonics by a femtosecond near-infrared (NIR) laser pulse in the presence of an extreme ultraviolet (XUV) field provided by a free-electron laser, a process referred to as XUV-assisted high-order harmonic generation (HHG). Our experimental findings show that the XUV field can lead to a small enhancement in the harmonic yield when the XUV and NIR pulses overlap in time, while a strong decrease of the HHG yield and a red shift of the HHG spectrum is observed when the XUV precedes the NIR pulse. The latter observations are in qualitative agreement with model calculations that consider the effect of a decreased number of neutral emitters but are at odds with the predicted effect of the correspondingly increased ionization fraction on the phase matching. Our study demonstrates the technical feasibility of XUV-assisted HHG experiments at free-electron lasers, which may provide new avenues to investigate correlation-driven electron dynamics as well as novel ways to study and control propagation effects and phase matching in HHG.


Author(s):  
Andrei Yakovlev ◽  
Alexandra Taisova ◽  
Zoya Fetisova

In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work,...


2020 ◽  
Vol 10 (8) ◽  
pp. 2953 ◽  
Author(s):  
Severin Meister ◽  
Hannes Lindenblatt ◽  
Florian Trost ◽  
Kirsten Schnorr ◽  
Sven Augustin ◽  
...  

The reaction microscope (REMI) endstation for atomic and molecular science at the free-electron laser FLASH2 at DESY in Hamburg is presented together with a brief overview of results recently obtained. The REMI allows coincident detection of electrons and ions that emerge from atomic or molecular fragmentation reactions in the focus of the extreme-ultraviolet (XUV) free-electron laser (FEL) beam. A large variety of target species ranging from atoms and molecules to small clusters can be injected with a supersonic gas-jet into the FEL focus. Their ionization and fragmentation dynamics can be studied either under single pulse conditions, or for double pulses as a function of their time delay by means of FEL-pump–FEL-probe schemes and also in combination with a femtosecond infrared (IR) laser. In a recent upgrade, the endstation was further extended by a light source based on high harmonic generation (HHG), which is now available for upcoming FEL/HHG pump–probe experiments.


2016 ◽  
Vol 41 (22) ◽  
pp. 5365 ◽  
Author(s):  
Hung-Tzu Chang ◽  
Michael Zürch ◽  
Peter M. Kraus ◽  
Lauren J. Borja ◽  
Daniel M. Neumark ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 312
Author(s):  
Yusuf Tutel ◽  
Gökhan Sevinç ◽  
Betül Küçüköz ◽  
Elif Akhuseyin Yildiz ◽  
Ahmet Karatay ◽  
...  

Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups connected to free-base porphyrin on the energy transfer mechanism. Absorption spectra of BODIPY-porphyrin conjugates showed wide absorption features in the visible region, and that is highly valuable to increase light-harvesting efficiency. Fluorescence spectra of the studied compounds proved that BODIPY emission intensity decreased upon the photoexcitation of the BODIPY core, due to the energy transfer from BODIPY unit to porphyrin. In addition, ultrafast pump-probe spectroscopy measurements indicated that the energy transfer of the 3BDP-TTP compound (about 3 ps) is faster than the BDP-TTP compound (about 22 ps). Since the BODIPY core directly binds to the porphyrin unit, rapid energy transfer was seen for both compounds. Thus, the energy transfer rate increased with an increasing number of BODIPY moiety connected to free-base porphyrin.


Sign in / Sign up

Export Citation Format

Share Document