Mechanical Properties of Diverse High-Temperature Compounds–Thermal Variation of Microhardness and Crack Formation

1988 ◽  
Vol 133 ◽  
Author(s):  
Robert L. Fleischer

ABSTRACTMicrohardness vs temperature and elastic moduli have been measured for a suite of intermetallic compounds that melt above 1400°C. Binary intermetallics were selected to represent a variety of crystal structures and yet have optimal combinations of high melting temperature (Tm) and low specific gravity. Some deliberately two-phase alloys were prepared in which one phase is a terminal-phase metal and the other an intermetallic compound.Binary compounds can be described by two patterns. In those where plasticity is difficult, hardness decreased slowly with temperature up to Tm/2, the decrease being no more than that normally shown by the elastic moduli. In those compounds where single crystal plasticity is known (or at least plausible), microhardness decreases more rapidly than do elastic moduli, presumably due to thermally activated slip.

2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


1984 ◽  
Vol 24 (06) ◽  
pp. 606-616 ◽  
Author(s):  
Charles P. Thomas ◽  
Paul D. Fleming ◽  
William K. Winter

Abstract A mathematical model describing one-dimensional (1D), isothermal flow of a ternary, two-phase surfactant system in isotropic porous media is presented along with numerical solutions of special cases. These solutions exhibit oil recovery profiles similar to those observed in laboratory tests of oil displacement by surfactant systems in cores. The model includes the effects of surfactant transfer between aqueous and hydrocarbon phases and both reversible and irreversible surfactant adsorption by the porous medium. The effects of capillary pressure and diffusion are ignored, however. The model is based on relative permeability concepts and employs a family of relative permeability curves that incorporate the effects of surfactant concentration on interfacial tension (IFT), the viscosity of the phases, and the volumetric flow rate. A numerical procedure was developed that results in two finite difference equations that are accurate to second order in the timestep size and first order in the spacestep size and allows explicit calculation of phase saturations and surfactant concentrations as a function of space and time variables. Numerical dispersion (truncation error) present in the two equations tends to mimic the neglected present in the two equations tends to mimic the neglected effects of capillary pressure and diffusion. The effective diffusion constants associated with this effect are proportional to the spacestep size. proportional to the spacestep size. Introduction In a previous paper we presented a system of differential equations that can be used to model oil recovery by chemical flooding. The general system allows for an arbitrary number of components as well as an arbitrary number of phases in an isothermal system. For a binary, two-phase system, the equations reduced to those of the Buckley-Leverett theory under the usual assumptions of incompressibility and each phase containing only a single component, as well as in the more general case where both phases have significant concentrations of both components, but the phases are incompressible and the concentration in one phase is a very weak function of the pressure of the other phase at a given temperature. pressure of the other phase at a given temperature. For a ternary, two-phase system a set of three differential equations was obtained. These equations are applicable to chemical flooding with surfactant, polymer, etc. In this paper, we present a numerical solution to these equations paper, we present a numerical solution to these equations for I D flow in the absence of gravity. Our purpose is to develop a model that includes the physical phenomena influencing oil displacement by surfactant systems and bridges the gap between laboratory displacement tests and reservoir simulation. It also should be of value in defining experiments to elucidate the mechanisms involved in oil displacement by surfactant systems and ultimately reduce the number of experiments necessary to optimize a given surfactant system.


1993 ◽  
Vol 8 (5) ◽  
pp. 957-961 ◽  
Author(s):  
J.C. Abele ◽  
R.L. Bristol ◽  
T.C. Nguyen ◽  
M.W. Ohmer ◽  
L.S. Wood

A model proposed by Tinkham1to explain the resistance versus temperature broadening found in highTcsuperconductors in applied magnetic fields is extended to “foot and knee”-structured data taken on polycrystalline YBa2Cu3O6+δ. The proposed extension involves a series combination of two types of superconductors. For this series combination to result, a critical ratio of the two types of superconductors must be met—a result common to both percolation and randomized cellular autonoma theory. This critical ratio is investigated via statistical computer models of a polycrystalline superconductor having two phases of crystallites—one with substantially lowerJcthan the other.


2012 ◽  
Vol 150 (3) ◽  
pp. 519-535 ◽  
Author(s):  
JACK E. TREAGUS ◽  
SUSAN H. TREAGUS ◽  
NIGEL H. WOODCOCK

AbstractThe boundary between the Rhoscolyn and New Harbour formations on Holy Island, Anglesey, has been described as a high strain zone or as a thrust. The boundary is here described at four localities, with reference to the contrasting sedimentary and deformational character of the two formations. At one of these localities, Borth Wen, sandstones and conglomerates at the top of the Rhoscolyn Formation are followed, without any break, by tuffs and then mudstones of the New Harbour Formation. It is concluded that there is clear evidence of depositional continuity across the boundary here, and that both formations subsequently shared a common two-phase deformation. The first (D1) was manifestly different in intensity and scale in the two formations, whereas the second (D2) produced very similar structures in both. The other three localities provide continuity of sedimentary and tectonic features at this boundary in a traverse along the length of Holy Island, leading us to identify two previously unrecognized major D1 folds in addition to the Rhoscolyn Anticline. At one of these localities (Holyhead), we confirm the presence of Skolithos just below the boundary, supporting radiometric evidence for a lower Cambrian or later age for the Rhoscolyn Formation. A turbidite interpretation for both the Rhoscolyn and New Harbour formations best fits the available evidence. A deep-water depositional environment is still compatible with the sporadic presence of Skolithos burrows, but less so with reported observations of hummocky and swaley cross-stratification lower down the South Stack Group.


1989 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
H. J. Bunge

Young's modulus of heavily deformed two-phase composites shows an unusually high increase after plastic deformation. It is assumed that this is due to two reasons, i.e. texture changes and changes of the moduli of the constitutive phases on the basis of non-linear elasticity theory and internal stresses of opposite sign in the phases. Expressions of the two contributions are given on the basis of simple model assumptions. It is estimated that the changes of shape and arrangement of the phases and shape and arrangement of the crystallites in the phases are only of minor importance.


Author(s):  
Ole Sigmund

Abstract This paper describes how the topology optimization method can be used as a tool for the synthesis of two-phase compliant actuators. Two materials, one or both being active materials, are distributed in a design domain such that the work performed on an elastic workpiece is maximized. The two-material design is obtained by introducing two variables per element. One variable determines the relative density of material in the element and the other variable determines the material type. Examples demonstrate the design of thermal actuators and gripping mechanisms.


1999 ◽  
Vol 66 (1) ◽  
pp. 172-180 ◽  
Author(s):  
K. Alzebdeh ◽  
M. Ostoja-Starzewaski

Two challenges in mechanics of granular media are taken up in this paper: (i) development of adequate numerical discrete element models of topologically disordered granular assemblies, and (ii) calculation of macroscopic elastic moduli of such materials using effective medium theories. Consideration of the first one leads to an adaptation of a spring-network (Kirkwood) model of solid-state physics to disordered systems, which is developed in the context of planar Delaunay networks. The model employs two linear springs: a normal one along an edge connecting two neighboring vertices (grain centers) which accounts for normal interactions between the grains, as well as an angular one which accounts for angle changes between two edges incident onto the same vertex; edges remain straight and grain rotations do not appear. This model is then used to predict elastic moduli of two-phase granular materials—random mixtures of soft and stiff grains —for high coordination numbers. It is found here that an effective Poisson’s ratio, νeff, of such a mixture is a convex function of the volume fraction, so that νeff may become negative when the individual Poisson’s ratios of both phases are both positive. Additionally, the usefulness of three effective medium theories—perfect disks, symmetric ellipses, and asymmetric ellipses—is tested.


1967 ◽  
Vol 45 (2) ◽  
pp. 481-492 ◽  
Author(s):  
B. Escaig ◽  
G. Fontaine ◽  
J. Friedel

The possible role of stacking faults is discussed in some problems of glide and twinning of cubic metals, especially at low temperatures.The first part analyzes a model for the thermal variation of macroyield in b.c.c. metals. If one assumes that the dislocations of such metals split along either the (110) or the (112) planes, the screw dislocations will be sessile. The strong temperature variation of macroyield could be due to the thermally activated slip of such screws, previously developed at lower stresses during the less temperature-dependent microyield. Reasonably high stacking-fault energies are required for satisfactory numerical fits.The second part studies the influence of a dense dislocation network on the propagation of a stacking fault. The friction force acting on the partial that propagates the fault must be taken into account when deducing a stacking-fault energy from the stress at which stacking faults develop in a strongly work-hardened (f.c.c.) metal. The trails of dipoles left at each tree crossed should prevent any creation of point defects; they should lead, after the faults have propagated some length, to its multiplication into a twin or martensitic lamella. The analogies with problems of slip bauds and dipole formation in easy glide are stressed.


Sign in / Sign up

Export Citation Format

Share Document