Some Aspects of the Nonstoichiometric and Thermodynamic Behavior of the YBa2Cu3Oz System

1989 ◽  
Vol 156 ◽  
Author(s):  
M. Tetenbaum ◽  
L. Curtiss ◽  
B. Czech ◽  
B. Tani ◽  
M. Blander

ABSTRACTThe nonstoichiometric and thermodynamic behavior of the YBa2Cu3Ox system as a function of oxygen partial pressure and temperature is being investigated by means of a coulometric titration technique. The oxygen content of the superconductor can be varied coulometrically by well-defined small amounts and the equilibrium partial pressures determined from the EMF. The oxygen stoichiometry in YBa2Cu3Ox as a function of oxygen partial pressure shows a change of curvature around x = 6.55–6.75 and an inflection around x ≅ 6.65 at temperatures between 400–500°C. These new low temperature data are consistent with the presence of a miscibility gap at lower temperatures, which is similar to that postulated in several theoretical papers.

1998 ◽  
Vol 13 (12) ◽  
pp. 3580-3586 ◽  
Author(s):  
A. L. Crossley ◽  
J. L. MacManus-Driscoll

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.


1990 ◽  
Vol 209 ◽  
Author(s):  
Elizabeth J. Opila ◽  
Harry L. Tuller

ABSTRACTThe equilibrium oxygen stoichiometry of La2−xSrxCuO4±y (x=O, 0.2, 0.4, and 1.0) has been determined by TGA at temperatures between 800 and 1050°C and oxygen partial pressures between 1 and 10−4 atmospheres. The changes in oxygen content with temperature, oxygen partial pressure, and strontium concentration are evaluated in terms of a defect model.


1995 ◽  
Vol 401 ◽  
Author(s):  
L. F. Cohen ◽  
Y. B. Li ◽  
G. Gibson ◽  
J. MacManus-Driscoll

AbstractTwo 123 thin films grown by e-beam evaporation have been studied using Raman microscopy. The films were grown under different conditions of temperature and oxygen partial pressure and show different levels of cation disorder as determined from the ‘c’ axis lattice parameter in combination with x-ray data. The oxygen stoichiometry in each film was changed by controlled anneals using a coulometric titration apparatus. As a result we report on the sensitivity of the 500cm−1 and 585cm−1 Raman peak to the oxygen stoichiometry and how the intensity and position of these peaks can be used to detect or confirm the presence of a small amount of cation disorder.


1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


Author(s):  
Koji Kosuge

In this chapter, we describe four kinds of non-stoichiometric compound, which are or will be in practical use, from the viewpoint of preparation methods or utility. As a first example, the solid electrolyte (ZrO2)0.85(CaO)0.15 is described, which are discussed in Sections 1.4.6–1.4.8 from the viewpoint of basic characteristics. The second example is the magnetic material Mn–Zn ferrite, for which the control of non-stoichiometry and the manufacturing process will be described. Then the metal hydrides or hydrogen absorbing alloys, which are one of the most promising materials for storing and transporting hydrogen in the solid state, are described, mainly focusing on the phase relation. Finally, we describe the relation between the control of composition and the growth of a single crystal of the semiconductive compound GaAs, which is expected to give electronic materials for 1C and LSI etc. Solid electrolytes, which show ionic conductivity in the solid state, are considered to be potential materials for practical use, some are already used as mentioned below. Solid electrolytes have characteristic functions, such as electromotive force, ion selective transmission, and ion omnipresence. Here we describe the practical use of calcia stabilized zirconia (CSZ), (ZrO2)0.85(CaO)0.15, the structure and basic properties of which are discussed in detail in Sections 1.4.5–1.4.8. The most simple practical application of CSZ is for the gauge of oxygen partial pressure, as mentioned in Sections 1.4.7 and 1.4.8. The oxygen partial pressure P2o2 in the closed system as shown in Fig. 3.1 can be measured, taking the air as the standard oxygen pressure P1o2. The electromotive force (EMF) of this concentration cell is expressed as . . . E = (RT/4F)ln(P1o2/ P2o2) . . . This principle is applied in the measurement of oxygen partial pressure in laboratory experiments and of the oxygen activity of slag in refineries. Based on the principle of coulometric titration (see Section 1.4.8), the oxygen partial pressure of a closed system can be kept constant by feedback of the EMF, in the oxygen pressure range 1 to 10−7 atm. By use of this closed system, investigations on redox reactions of metals and also enzyme reactions have been carried out.


1981 ◽  
Vol 36 (10) ◽  
pp. 1211-1214 ◽  
Author(s):  
W. Laqua

Abstract If a NiTiO3 poly crystal is exposed to an oxygen-potential gradient -established by the simultaneous action of two different oxygen partial pressures -it will be decomposed into its component oxides NiO and TiO2 despite the fact, that the compound is stable at both the lower and the higher oxygen partial pressure. A quantitative explanation of this phenomenon will be given below.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
P. Narayana Reddy ◽  
A. Sreedhar ◽  
M. Hari Prasad Reddy ◽  
S. Uthanna ◽  
J. F. Pierson

Silver-copper-oxide thin films were formed by RF magnetron sputtering technique using Ag80Cu20target at various oxygen partial pressures in the range 5 × 10−3–8 ×10−2 Pa and substrate temperatures in the range 303–523 K. The effect of oxygen partial pressure and substrate temperature on the structure and surface morphology and electrical and optical properties of the films were studied. The Ag-Cu-O films formed at room temperature (303 K) and at low oxygen partial pressure of 5 × 10−3 Pa were mixed phase of Ag2Cu2O3and Ag, while those deposited at 2 × 10−2 Pa were composed of Ag2Cu2O4and Ag2Cu2O3phases. The crystallinity of the films formed at oxygen partial pressure of 2 × 10−2Pa increased with the increase of substrate temperature from 303 to 423 K. Further increase of substrate temperature to 523 K, the films were decomposed in to Ag2O and Ag phases. The electrical resistivity of the films decreased from 0.8 Ωcm with the increase of substrate temperature from 303 to 473 K due to improvement in the crystallinity of the phase. The optical band gap of the Ag-Cu-O films increased from 1.47 to 1.83 eV with the increase of substrate temperature from 303 to 473 K.


1993 ◽  
Vol 312 ◽  
Author(s):  
D. P. Adamst ◽  
D. J. Eaglesham ◽  
S. M. Yalisove

AbstractHydrogen is shown to influence the surface roughness during low temperature Si MBE. Small partial pressures (1 × 10-7 Torr) of deuterium, introduced during Si growth at 310°C, are sufficient to increase the surface width to ∼30 Å before breakdown of epitaxy. This work is consistent with previous studies of the dependence of epitaxial thickness on hydrogen partial pressure and supports a model in which surface roughening leads to the breakdown of epitaxy.


Sign in / Sign up

Export Citation Format

Share Document