A Misfit Dislocation Blocking Mechanism in Continuous InGaAs Layers Grown on Patterned GaAs

1993 ◽  
Vol 308 ◽  
Author(s):  
G. Patrick Watson ◽  
Dieter G. Ast ◽  
Timothy J. Anderson ◽  
Balu Pathangey

ABSTRACTPrevious work showed that misfit dislocations were blocked at trench walls in a unique way in InGaAs strained layers grown on GaAs that was patterned and etched to form a series of mesas separated by trenches. A model is developed to explain the behavior of misfit dislocations in this material. The energy cost of extending the threading dislocation segment, which accompanies a misfit dislocation during glide, can impede the motion of these defects if the trench walls are steep enough.

1990 ◽  
Vol 188 ◽  
Author(s):  
W. D. Nix ◽  
D. B. Noble ◽  
J. F. Turlo

ABSTRACTThe mechanisms and kinetics of forming misfit dislocations in heteroepitaxial films are studied. The critical thickness for misfit dislocation formation can be found by considering the incremental extension of a misfit dislocation by the movement of a “threading” dislocation segment that extends from the film/substrate interface to the free surface of the film. This same mechanism allows one to examine the kinetics of dislocation motion and to illuminate the importance of dislocation nucleation and multiplication in strain relaxation. The effects of unstrained epitaxial capping layers on these processes are also considered. The major effects of such capping layers are to inhibit dislocation nucleation and multiplication. The effect of the capping layer on the velocity of the “threading” dislocation is shown to be small by comparison.A new substrate curvature technique for measuring the strain and studying the kinetics of strain relaxation in heteroepitaxial films is also briefly described.


1990 ◽  
Vol 198 ◽  
Author(s):  
D.C. Houghton ◽  
N.L. Rowell

ABSTRACTThe thermal constraints for device processing imposed by strain relaxation have been determined for a wide range of Si-Ge strained heterostructures. Misfit dislocation densities and glide velocities in uncapped Sil-xGex alloy layers, Sil-xGex single and multiple quantum wells have been measured using defect etching and TEM for a range of anneal temperatures (450°C-1000°C) and anneal times (5s-2000s). The decay of an intense photoluminescence peak (∼ 10% internal quantum efficiency ) from buried Si1-xGex strained layers has been correlated with the generation of misfit dislocations in adjacent Sil-xGex /Si interfaces. The misfit dislocation nucleation rate and glide velocity for all geometries and alloy compositions (0<x<0.25) were found to be thermally activated processes with activation energies of (2.5±0.2)eV and (2.3-0.65x)eV, respectively. The time-temperature regime available for thermal processing is mapped out as a function of dislocation density using a new kinetic model.


1992 ◽  
Vol 263 ◽  
Author(s):  
Michael A. Capano

ABSTRACTA new mechanism which describes how misfit dislocations in epitaxial layers multiply is presented. This work demonstrates how a single threading dislocation can give rise to an array of dislocation sources, where each source generates a single dislocation loop perpendicular to the primary misfit dislocation. As a threading dislocation with pure screw character glides through an epilayer, certain processes occur which lead to the production of a single dislocation half-loop, and the regeneration of the original threading dislocation. The regenerated threading dislocation continues to propagate on its primary glide plane, which allows the process to repeat itself at some later time. The result of this sequential process is an array of half-loops perpendicular to the primary misfit dislocation. The shape and symmetry of the arrays also contains information regarding how the mechanism operates. The proposed mechanism is related to misfit dislocation arrays in a single Si0.87Ge0.13 layer on Si(001).


1991 ◽  
Vol 239 ◽  
Author(s):  
R. Hull ◽  
J. C. Bean ◽  
F. Ross ◽  
D. Bahnck ◽  
L. J. Pencolas

ABSTRACTThe geometries, microstructures, energetics and kinetics of misfit dislocations as functions of surface orientation and the magnitude of strain/stress are investigated experimentally and theoretically. Examples are drawn from (100), (110) and (111) surfaces and from the GexSi1–x/Si and InxGa1–x/GaAs systems. It is shown that the misfit dislocation geometries and microstructures at lattice mismatch stresses < - 1GPa may in general be predicted by operation of the minimum magnitude Burgers vector slipping on the widest spaced planes. At stresses of the order several GPa, however, new dislocation systems may become operative with either modified Burgers vectors or slip systems. Dissociation of totál misfit dislocations into partial dislocations is found to play a crucial role in strain relaxation, on surfaces other than (100) under compressive stress.


1993 ◽  
Vol 298 ◽  
Author(s):  
L. Vescan ◽  
T. Stoica ◽  
C. Dieker ◽  
H. LÜth

AbstractIn Si0.88Ge0.12/Si strained layers misfit dislocations formed during growth in small pads are generated at a significantly higher critical thickness than on extended areas, while pads of lateral size of 10 μm or smaller show no evidence of misfit dislocations at all. The SiGe layers investigated were selectively grown on patterned substrates with pad sizes from 2 μm to 1 cm. An elastic relaxation model was used to calculate the pad size dependence of the critical thickness. The main hypothesis of the model is that the density of misfit dislocations is solely affected by the elastic relaxation at the edges of small epitaxial areas. This equilibrium model is able to explain the observed absence of misfit dislocations on small pads, however it predicts a critical thickness for finite sizes much lower than the observed one.


2018 ◽  
Vol 27 (03n04) ◽  
pp. 1840022 ◽  
Author(s):  
Minglei Cai ◽  
Tedi Kujofsa ◽  
Xinkang Chen ◽  
Md Tanvirul Islam ◽  
John E. Ayers

Several simple models have been developed for the threading dislocation behavior in heteroepitaxial semiconductor materials. Tachikawa and Yamaguchi [Appl. Phys. Lett., 56, 484 (1990)] and Romanov et al. [Appl. Phys. Lett., 69, 3342 (1996)] described models for the annihilation and coalescence of threading dislocations in uniform-composition layers, and Kujofsa et al. [J. Electron. Mater., 41, 2993 (2013)] extended the annihilation and coalescence model to compositionally-graded and multilayered structures by including the misfit dislocation-threading dislocation interactions. However, an important limitation of these previous models is that they involve empirical parameters. The goal of this work is to develop a predictive model for annihilation and coalescence of threading dislocations which is based on the dislocation interaction length Lint. In the first case if only in-plane glide is considered the interaction length is equal to the length of misfit dislocation segments while in the second case glide and climb are considered and the interaction length is a function of the distance from the interface, the length of misfit dislocations, and the density of the misfit dislocations. In either case the interaction length may be calculated using a model for dislocation flow. Knowledge of the dislocation interaction length allows predictive calculations of the threading dislocation densities in metamorphic device structures and is of great practical importance. Here we demonstrate the latter model based on glide and climb. Future work should compare the two models to determine which is more relevant to typical device heterostructures.


1991 ◽  
Vol 238 ◽  
Author(s):  
Richard Beanland

ABSTRACTThere is considerable interest at present in the mechanisms of tilting of epitaxial films, such that low index planes in layer and substrate have slightly different orientations. There are two primary causes of this effect: a) coherency strains and b) the action of misfit dislocations. It is important to distinguish between the two effects, particularly in the case of strained layers used for band-gap engineering. Using a recent formulation of the Frank-Bilby equation for the dislocation content of interfaces, it is shown how planes may be rotated in coherent layers due to both the Poisson effect and anisotropic misfit. An advantage of the Frank-Bilby equation is that it allows consideration of semicoherent layers. It is shown that a side effect of misfit dislocation introduction can be to introduce a further rotation of the epitaxial layer. Both these effects have been measured experimentally. The amount and the sense of rotation is compared to theory.


1988 ◽  
Vol 116 ◽  
Author(s):  
R. Hull ◽  
J.C. Bean ◽  
R.E. Leibenguth

AbstractWe describe in-situ transmission electron microscope observations of the relaxation of strained layer GeSi/Si epitaxy. Dynamic observations of misfit dislocations in these structures reveal that dislocation nucleation and growth activation barriers, as well as interactions, limit the rate at which strain is relieved. The equivalence of threading and misfit dislocations in this system is demonstrated. Extension of the principles learnt from these single layer experiments to threading dislocation propagation through multilayer structures, enables us to understand the relative inefficiency of GeSi/Si strained layer superlattices in blocking threading dislocations.


1989 ◽  
Vol 160 ◽  
Author(s):  
L. B. Freund ◽  
J. C. Ramirez ◽  
A. F. Bower

AbstractThe glide of a threading dislocation in a strained layer may be impeded as it encounters interface misfit dislocations on intersecting glide planes. An estimate of the change in driving force on the threading dislocation during this interaction is discussed within the framework of elastic dislocation theory.


Author(s):  
K.P.D. Lagerlöf ◽  
A.H. Heuer ◽  
T.E. Mitchell

It has been reported by Lally et. al. [1] that precipitates of hematite (Fe2O3, space group R3c) in a matrix of ilmenite (FeTiO3, space group R3) are lens shaped and flattened along the [0001]-direction. The coherency across the interface is lost by the introduction of a misfit dislocation network, which minimizes the strain due to the deviation in lattice parameters between the two phases [2]. The purpose of this paper is to present a new analysis of this network.


Sign in / Sign up

Export Citation Format

Share Document