AbstractCovalent triazine frameworks have recently been demonstrated as promising materials for photocatalytic water splitting and are usually used in the form of suspended powder. From a practical point of view, immobilized CTFs materials are more suitable for large-scale water splitting, owing to their convenient separation and recycling potential. However, existing synthetic approaches mainly result in insoluble and unprocessable powders, which make their future device application a formidable challenge. Herein, we report an aliphatic amine-assisted interfacial polymerization method to obtain free-standing, semicrystalline CTFs film with excellent photoelectric performance. The lateral size of the film was up to 250 cm2, and average thickness can be tuned from 30 to 500 nm. The semicrystalline structure was confirmed by high-resolution transmission electron microscope, powder X-ray diffraction, grazing-incidence wide-angle X-ray scattering, and small-angle X-ray scattering analysis. Intrigued by the good light absorption, crystalline structure, and large lateral size of the film, the film immobilized on a glass support exhibited good photocatalytic hydrogen evolution performance (5.4 mmol h−1 m−2) with the presence of co-catalysts i.e., Pt nanoparticles and was easy to recycle.