Single Crystalline SOI Square Islands Fabricated by Laser Recrystallization Using a Surrounding Antireflection Cap and Successive Self-Aligned Isolation Utilizing the Same Cap

1984 ◽  
Vol 35 ◽  
Author(s):  
R. Mukai ◽  
N. Sasaki ◽  
T. Iwai ◽  
S. Kawamura ◽  
M. Nakano

ABSTRACTA new laser recrystallizing technique has been developedfor high density SOI-LSI's. This technique produces single crystalline silicon islands on an amorphous insulating layerwithout seed. Square windows are opened at arbitrary places in an antireflection cap over a polycrystalline film on an amorphous insulatinq layer. Grain boundaries of the polycrystalline Si in the window are removed completely at the subsequent laser-recrystallization step. Single crystalline silicon islands are formed by self-aligned etching of silicon film which was covered by the antireflection cap. This technique is an effective method for fabricating high density SOI-LSI's, since the singlecrystalline islands can be fabricated at arbitrarily selected places. Yield of the grain-boundary-free islands was 95% the size of the island is 1O x 20μm, and the irradiation oyerlap of laser-beam traces is 70%.

2007 ◽  
Vol 46 (1) ◽  
pp. 21-23 ◽  
Author(s):  
Norihito Kawaguchi ◽  
Ryusuke Kawakami ◽  
Ken-ichiro Nishida ◽  
Naoya Yamamoto ◽  
Miyuki Masaki ◽  
...  

2019 ◽  
Vol 200 ◽  
pp. 109985 ◽  
Author(s):  
Fang Zhang ◽  
Xuegong Yu ◽  
Chao Liu ◽  
Shuai Yuan ◽  
Xiaodong Zhu ◽  
...  

2013 ◽  
Vol 58 (2) ◽  
pp. 142-150 ◽  
Author(s):  
A.V. Sachenko ◽  
◽  
V.P. Kostylev ◽  
V.G. Litovchenko ◽  
V.G. Popov ◽  
...  

1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


Sign in / Sign up

Export Citation Format

Share Document