Ferroelectric Behavior and Microstructure of Calcium-Modified Lead Titanate Ceramics

1994 ◽  
Vol 360 ◽  
Author(s):  
Zhiqiang Zhuang ◽  
G.A. Kulesha ◽  
H. Du ◽  
B. Gallois

AbstractCalcium-doped lead titanate ceramics exhibiting piezoelectric anisotropy were fabricated for applications in ultrasonic transducers, infrared detectors and surface acoustic wave devices. Transmission electron microscopy and X-ray diffraction techniques were used to characterize the development of the piezoelectric anisotropy and the dependence of the piezoelectric anisotropy on microstructure. Electron diffraction patterns indicated that most of the ferroelectric domains in samples with [CaA] up to 30 mole% were 90° domains. The size of the ferroelectric domains was not related to piezoelectric anisotropy. Ferroelectric domains could not be detected above this concentration. Measurements of the temperature dependence of dielectric properties at different frequencies did not show any ferroelectric relaxor behavior.

2007 ◽  
Vol 353-358 ◽  
pp. 3136-3139
Author(s):  
Hua Ke ◽  
Xiao Jing Kou ◽  
Zhe Lu ◽  
He Jun Li ◽  
Wen Wang ◽  
...  

The microstructure and ferroelectric domains of SrBi2Ta1.6Nb0.4O9 ceramics were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). The X-ray diffraction patterns show that the lattice constants a and b decrease, and c increases by doping with Nb into SBT sample. Accordingly, it has large strain and lattice distortion in the lattice This suggests that the Nb atoms partially occupy the location of the Ta atoms in the lattice. From TEM observations, the grains show (008) preferred orientations in the sample, which agrees well with the XRD results. The 90° domain walls are identified by the 90° rotation relationship of the electron diffraction pattern about the [001] zone axis. The 180° domain walls and anti-phase boundaries (APBs) in Nb-doped SBT ceramics are also observed, which are irregularly shaped and highly curved. The traditional α-fringes can be found in the Nb-doped SBT ceramics, which are the evidence of large strains in the lattice.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


2015 ◽  
Vol 68 (8) ◽  
pp. 1293 ◽  
Author(s):  
Pakvipar Chaopanich ◽  
Punnama Siriphannon

Hydroxyapatite (HAp) nanoparticles were successfully synthesized from an aqueous mixture of Ca(NO3)2·4H2O and (NH4)2HPO4 by a facile single-step refluxing method using polystyrene sulfonate (PSS) as a template. The effects of reaction times, pH, and PSS concentration on the HAp formation were investigated. It was found that the crystalline HAp was obtained under all conditions after refluxing the precursors for 3 and 6 h. The longer refluxing time, the greater the crystallinity and the larger the crystallite size of the HAp nanoparticles. The HAp with poor crystallinity was obtained at pH 8.5; however, the well-crystallized HAp was obtained when reaction pH was increased to 9.5 and 10.5. In addition, the X-ray diffraction patterns revealed that the presence of PSS template caused the reduction of HAp crystallite size along the (002) plane from 52.6 nm of non-template HAp to 43.4 nm and 41.4 nm of HAp with 0.05 and 0.2 wt-% PSS template, respectively. Transmission electron microscopy images of the synthesized HAp revealed the rod-shaped crystals of all samples. The synthesized HAp nanoparticles were modified by l-aspartic acid (Asp) and l-arginine (Arg), having negative and positive charges, respectively. It was found that the zeta potential of HAp was significantly changed from +5.46 to –24.70 mV after modification with Asp, whereas it was +4.72 mV in the Arg-modified HAp. These results suggested that the negatively charged amino acid was preferentially adsorbed onto the synthesized HAp surface.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


2007 ◽  
Vol 7 (2) ◽  
pp. 634-640 ◽  
Author(s):  
M. Siliani ◽  
M. A. López-Manchado ◽  
J. L. Valentín ◽  
M. Arroyo ◽  
A. Marcos ◽  
...  

Novel millable polyurethane (PU)/organoclay nanocomposites have been successfully prepared by conventional transformation techniques. One natural (C6A) and two organically modified (C15A and C30B) montmorillonites have been used as clays for preparing PU nanocomposites. The optimum dispersion of nanofiller at a nanometer scale in PU matrix was confirmed by X-ray diffraction patterns and transmission electron microscopy. A substantial improvement of the PU properties by addition of only a small amount of organoclay was observed. It is worthy to note that the organoclays show a different interfacial interaction with the PU matrix, which was reflected in different macroscopic properties. Thus, C30B organoclay seems to react with PU chains to form covalent bonds, while C15Aonly interacts physically with PU chains. Mechanical and barrier properties are analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei-Lin Wang ◽  
Chia-Ti Wang ◽  
Wei-Chun Chen ◽  
Kuo-Tzu Peng ◽  
Ming-Hsin Yeh ◽  
...  

Ta/TaN bilayers have been deposited by a commercial self-ionized plasma (SIP) system. The microstructures of Ta/TaN bilayers have been systematically characterized by X-ray diffraction patterns and cross-sectional transmission electron microscopy. TaN films deposited by SIP system are amorphous. The crystalline behavior of Ta film can be controlled by the N concentration of underlying TaN film. On amorphous TaN film with low N concentration, overdeposited Ta film is the mixture ofα- andβ-phases with amorphous-like structure. Increasing the N concentration of amorphous TaN underlayer successfully leads upper Ta film to form pureα-phase. For the practical application, the electrical property and reliability of Cu interconnection structure have been investigated by utilizing various types of Ta/TaN diffusion barrier. The diffusion barrier fabricated by the combination of crystallizedα-Ta and TaN with high N concentration efficiently reduces the KRc and improves the EM resistance of Cu interconnection structure.


1994 ◽  
Vol 346 ◽  
Author(s):  
Carol S. Houk ◽  
Gary A. Burgoine ◽  
Catherine J. Page

ABSTRACTWe have investigated the homogeneity of sol‐gel derived YBa2Cu307‐s from the solution phase to the final product using transmission electron microscopy (TEM), x‐ray diffraction (XRD), and Energy Dispersive X‐ray (EDX) lateral mapping techniques. The starting solutions contain stoichiometric amounts of the metal 2‐(2‐methoxyethoxy)ethoxide components in 2‐(2‐methoxyethoxy)ethanol and appear to be homogeneous by TEM with a uniform distribution of particles having an average size of less than 40 â. Through elemental mapping we see elemental segregation in the high temperature (950 °C) products, which are orthorhombic by XRD. In elemental maps of gel samples fired to 700 °C, which are tetragonal by XRD, we also see elemental inhomogeneity within particles and phase zoning in maps of products from finely ground gels. A comparison of elemental maps and x‐ray diffraction patterns of the products from gel processing and conventional solid state processing is made.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


1993 ◽  
Vol 313 ◽  
Author(s):  
H. Siriwardane ◽  
P. Fraundorf ◽  
J.W. Newkirk ◽  
O.A. Pringle ◽  
W.J. James

Thin iron carbide films were prepared by introducing iron penta carbonyl (FeCO5) and hydrogen (H2) into a glow discharge. The films are of potential interest in corrosion and wear resistant applications. X-ray diffraction data of films (≈ 7000 Å thick) deposited on glass at 300°C evidenced only Fe7C3. Thinner films were required for examination by analytical and high resolution transmission electron Microscopy. Therefore, two sets of films (“thin” < 200 Å and “thick” ≈ 800 Å) were plasma-deposited on carbon or holey carbon films supported on copper grids. The thin TEM specimens exhibited a fine texture and gave rise to ring diffraction patterns, whereas the thick TEM specimens evidenced two types of structure: (i) half-Micron sized grains separated from one another by 1–2 Microns on the support, although sometimes interconnected by single crystal platelets and (ii) 300 Å grapelike clumps of 100–200 Å crystals, each individually surrounded by a 50 Å non-crystalline coating. The latter structure may result from a post-formation oxidation process which expels carbon from the iron phase into grain boundaries.


2010 ◽  
Vol 150-151 ◽  
pp. 561-564
Author(s):  
Hao Qun Hong ◽  
Hai Yan Zhang ◽  
Hui He ◽  
De Min Jia

The polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by melt blending the organic MMT with the ternary-monomer graft copolymers of polyethylene (GPE) which were prepared by solid phase grafting maleic anhydride, methyl methacrylate and butyl acrylate onto PE. Fourier transform infrared spectroscopy was used to characterize the structure of GPE. X-ray diffraction patterns and transmission electron microscopy were used to characterize the morphology of GPE/MMT nanocomposites. Results showed that GPE was an outstanding polymeric material to prepare an exfoliated polymer/layered silicates nanocomposites due to the high polarity of GPE and high graft degree. Most layered silicates still maintain the exfoliated and well dispersed state even at 40 phr OMMT content. The exfoliation of layered silicates was attributed to the well intercalation and easy wetting of the grafted oligomers.


Sign in / Sign up

Export Citation Format

Share Document