Thermal Stability and Failure Mechanisms of Au/Tiw(N)/Si and Au/TiW(N)/Si02/Si Systems

1996 ◽  
Vol 427 ◽  
Author(s):  
C. R. Chen ◽  
L. J. Chen

AbstractThermal stability and failure mechanisms of Au/TiW(N)/Si and Au/TiW(N)/SiO2/Si systems have been studied by both conventional and high-resolution transmission electron microscopy, X- ray diffraction and Auger electron spectroscopy. For films deposited in Ar gas containing 20% N2, a single face-centered-cubic phase was the only crystalline phase detected to form. The samples were found to remain stable after annealing at 700 °C for 30 min. The stability temperature for Au/TiW(N)(Ar:N2=80:20)/SiO2/Si samples was found to be higher than those of Au/TiW(N) (Ar:N2=90:10)/SiO2/Si and Au/TiW/SiO2/Si samples.

2008 ◽  
Vol 373-374 ◽  
pp. 318-321
Author(s):  
J. Liang ◽  
M.K. Lei

Effects of stacking faults in a high nitrogen face-centered-cubic phase (γΝ) formed on plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel on peak shift and peak asymmetry of x-ray diffraction were investigated based on Warren’s theory and Wagner’s method, respectively. The peak shift from peak position of the γΝ phase is ascribed to the deformation faults density α, while the peak asymmetry of the γΝ phase is characterized by deviation of the center of gravity of a peak from the peak maximum (Δ C.G.) due to the twin faults density β. The calculated peak positions of x-ray diffraction patterns are consistent with that measured for plasma source ion nitrided 1Cr18Ni9Ti stainless steel.


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


2010 ◽  
Vol 97-101 ◽  
pp. 19-22 ◽  
Author(s):  
Yu Shiang Wu ◽  
Wen Ku Chang ◽  
Min Jou

Zinc stannate Zn2SnO4 (ZTO) nanoparticles were synthesized via a hydrothermal process utilizing sodium carbonate (Na2CO3) as a weak basic mineralizer. The samples were hydrothermally treated at 150, 200, and 250oC for 48 h. The X-ray diffraction (XRD) patterns show that the highly-crystalline ZTO nanostructure could be formed in a well-dispersed manner for the 250°C sample at a particle size of less than 50 nm. As determined from transmission electron microscopy (TEM) results, ZTO nanoparticles are face-centered cubic single crystals agglomerated together. The Raman spectra results showed that the ZTO nanocrystals have a spinel structure. Furthermore, photocatalytic activity was tested with methylene blue (MB) by UV irradiation. The ZTO synthesized by the 2 M Na2CO3 mineralizer at 250oC demonstrated excellent photocatalytic activity. The ZTO treated three different ways had three distinct UV-Visible absorption curves, which directly influences their corresponding photocatalytic activity.


2013 ◽  
Vol 749 ◽  
pp. 192-197
Author(s):  
Xue Min Huang ◽  
Quan Sheng Wang ◽  
Ying Liu ◽  
Xiu Chen Zhao ◽  
Shu Lai Wen

The two kinds of flower-like ultrafine cobalt particles were prepared by reducing cobalt chloride (CoCl2·6H2O) with hydrazine hydrate (N2H4·H2O) under ultrasonic and microwave radiation, in which ethanol-water or ethylene glycol-water mixture was used as solvent. The morphology, crystal structure and magnetic properties of the as-prepared particles were characterized by scanning electron microscope (SEM), x-ray diffraction pattern (XRD) and vibrating sample magnetometer (VSM). The results show that the petals of the flower-like cobalt particles prepared in the ethanol-water system were dendritic, while the petals of the flower-like cobalt particles prepared in the ethylene glycol-water system were sword-like. The crystal structure of cobalt particles prepared in the two kinds of systems both consisted of hexagonal close-packed cubic phase and face-centered cubic phase, but the relative content was different. The saturation magnetization of the cobalt particles with dendritic petals and the cobalt particles with sword-like petals was the same approximately, but their coercivity was greatly different (the difference in value about 7184.14Am-1), which might be attributed to the magnetocrystalline anisotropy and shape anisotropy.


2013 ◽  
Vol 860-863 ◽  
pp. 822-825
Author(s):  
Jin Yun Liao ◽  
Hao Li ◽  
Xi Bin Zhang

In this study, aiming to obtain high performance nanocatalysts for NaBH4 hydrolysis, Co3Ni film composed of nanosheets with a mean thickness of 10 nm was fabricated by a magnetic field induced deposition process. X-ray diffraction analysis indicated that the as-prepared Co3Ni film is presented in both face-centered cubic phase and hexagonal close-packed phase. The nanostructured Co3Ni film catalyst showed good catalytic activity in the hydrolysis of NaBH4 and the rate constant was 5.77 mL·min-1. It was revealed that Co3Ni film catalysts didnt lose their catalytic original activity essentially after 10 cycles, which exhibited much improved reusability and stability compared with with recently reported nanocatalysts.


2014 ◽  
Vol 492 ◽  
pp. 291-296
Author(s):  
Arup Ratan Mandal ◽  
Sergey Volchematiev ◽  
Denis Leybo ◽  
Dmitry Muratov ◽  
Denis V. Kuznetsov

Cadmium sulfide (CdS) nanoparticles synthesized by utilization of wet chemical technique are grown in polyvinyl alcohol (PVA) matrix. X-ray diffraction (XRD) pattern shows the typical inter-planar spacing corresponding to the cubic phase of CdS. High-resolution transmission electron microscopy (HRTEM) studies show the nanoparticles formation with diameter around 11 nm. Particle size is further determined by dynamic light scattering (DLS) measurement. The polymerization of PVA is confirmed by fourier transform infrared (FTIR) spectroscopy of CdS nanoparticles. UV-visible optical spectroscopy study shows that sharp excitonic bands are largely blue shifted from the absorption onset of bulk CdS and inter band transition of copper doped samples. Thermal stability of the samples is measured by thermogravimetric (TG) analysis which is also studied in details.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
L. M. Artem ◽  
D. M. Santos ◽  
A. R. De Andrade ◽  
K. B. Kokoh ◽  
J. Ribeiro

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of350∘C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm-3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.


2018 ◽  
Vol 50 (8) ◽  
pp. 710-719
Author(s):  
Shengtao Gao ◽  
Honglong Xing

Nanosilver/poly(acetoacetoxyethyl methacrylate–styrene) (nano-Ag/P(AAEM-St)) composites were synthesized via emulsifier-free emulsion with silver nitrate solution, AAEM, and St monomer copolymerization by ultrasonic. The morphology and structure of the composites were characterized by ultraviolet and visible spectroscopy, X-ray diffractometer, and transmission electron microscopy, respectively. The results show that Ag nanoparticles with face-centered cubic structure are homogeneously dispersed in the P(AAEM-St) matrix. The thermal stability and the thermal degradation kinetics of P(AAEM-St) were investigated using the thermogravimetric analysis and Kissinger and Flynn–Wall–Ozawa method, respectively. The results prove that the thermal stability of the pure P(AAEM-St) is better than that of the nano-Ag/P(AAEM-St) composites.


1994 ◽  
Vol 9 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Alan F. Jankowski ◽  
Mark A. Wall

The artificial layering of metals can change both physical and structural characteristics from the bulk. The stabilization of polymorphic metallic phases can occur on a dimensional scale that ranges from single overgrowth layers to repetitive layering at the nanoscale. The sputter deposition of crystalline titanium on nickel, as both a single layer and in multilayer form, has produced a face-centered cubic phase of titanium. The atomic structure of the face-centered cubic titanium phase is examined using high resolution electron microscopy in combination with electron and x-ray diffraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tereza Cristina Santos Evangelista ◽  
Giordano Toscano Paganoto ◽  
Marco Cesar Cunegundes Guimarães ◽  
Josimar Ribeiro

Physicochemical and electrochemical characterisations of Pt-based electrocatalysts supported on carbon (Vulcan carbon, C1, and carbon produced by plasma pyrolysis of natural gas, C2) toward ethanol electrooxidation were investigated. The Pt20/C180and Pt20/C280electrocatalysts were prepared by thermal decomposition of polymeric precursors at 350°C. The electrochemical and physicochemical characterisations of the electrocatalysts were performed by means of X-ray diffraction (XRD), transmission electron microscope (TEM), Raman scattering, cyclic voltammetry, and chronoamperometry tests. The XRD results show that the Pt-based electrocatalysts present platinum metallic which is face-centered cubic structure. The results indicate that the Pt20/C180electrocatalyst has a smaller particle size (10.1–6.9 nm) compared with the Pt20/C280electrocatalyst; however, the Pt20/C280particle sizes are similar (12.8–10.4 nm) and almost independent of the reflection planes, which suggests that the Pt crystallites grow with a radial shape. Raman results reveal that both Vulcan carbon and plasma carbon are graphite-like materials consisting mostly of sp2carbon. Cyclic voltammetry and chronoamperometry data obtained in this study indicate that the deposition of Pt on plasma carbon increases its electrocatalytic activity toward ethanol oxidation reaction.


Sign in / Sign up

Export Citation Format

Share Document