Microscopic Mechanisms for Reduced Static Dielectric Constants in Si-O-F Alloy Films

1997 ◽  
Vol 476 ◽  
Author(s):  
H. Yang ◽  
G. Lucovsky

AbstractThere is considerable interest in insulators with static dielectric constants lower than SiO2; an alloy system attracting recent attention is Si-O-F. Alloying of F atoms into plasma-deposited SiO2 films leads to major changes in the SiO2 bond-stretching and -bending infrared bands accounting for a significant fraction of the reduction in the dielectric constant. These changes are explained by F induced modifications of force constants and effective charges of the neighboring Si-O-Si groups.

2015 ◽  
Vol 51 (74) ◽  
pp. 14115-14118 ◽  
Author(s):  
Jenny E. Donaghey ◽  
Ardalan Armin ◽  
Paul L. Burn ◽  
Paul Meredith

Substitution of alkyl solubilizing groups with short glycol chains can give non-fullerene electron acceptors with static dielectric constants of up to 9.8.


1996 ◽  
Vol 443 ◽  
Author(s):  
G. Lucovsky ◽  
H. Yang

AbstractSi-O-F alloys have static dielectric constants (εs) significantly lower than SiO2. Infrared absorption spectra provide the basis modeling the molecular structure of these alloys. Contributions of electronic and vibrational transitions to εs are discussed in terms of an empirical chemical bonding model. Ab initio calculations are then used to identify inductive effects of Si- F bonds on the properties of Si-O-Si groups that are back-bonded to the Si atom of the Si-F group. These calculations provide a theoretical framework for understanding how relatively low concentrations of F atoms produce the significant decreases in εs reported for Si-O-F alloys.


2011 ◽  
Vol 470 ◽  
pp. 60-65 ◽  
Author(s):  
Masahiro Tamura ◽  
Jun Nakamura ◽  
Akiko Natori

Dielectric properties of α-quartz and rutile-GeO2 thin-films are investigated using first-principles ground-state calculations in external electric fields. The optical and the static dielectric constants inside the films have nearly-constant values, corresponding to their bulk values, while only at the topmost surface layer the dielectric constants decrease distinctly. It has been found that the dielectric constant for the rutile-GeO2 is larger than that for the α-quartz one, which stems from the larger ionic character of the Ge-O bond for the rutile phase.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5179-5181
Author(s):  
Sayantan Mondal ◽  
Biman Bagchi

Neglects of inherent anisotropy and distinct dielectric boundaries may lead to completely erroneous results. We demonstrate that such mistakes can give rise to gross underestimation of the static dielectric constant of cylindrically nanoconfined water.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350057 ◽  
Author(s):  
HSIU-YA TASI ◽  
CHAOYUAN ZHU

Dielectric constants and Seebeck coefficients for semiconductor materials are studied by thermodynamic method plus ab initio quantum density functional theory (DFT). A single molecule which is formed in semiconductor material is treated in gas phase with molecular boundary condition and then electronic polarizability is directly calculated through Mulliken and atomic polar tensor (APT) density charges in the presence of the external electric field. This electronic polarizability can be converted to dielectric constant for solid material through the Clausius–Mossotti formula. Seebeck coefficient is first simulated in gas phase by thermodynamic method and then its value divided by its dielectric constant is regarded as Seebeck coefficient for solid materials. Furthermore, unit cell of semiconductor material is calculated with periodic boundary condition and its solid structure properties such as lattice constant and band gap are obtained. In this way, proper DFT function and basis set are selected to simulate electronic polarizability directly and Seebeck coefficient through chemical potential. Three semiconductor materials Mg 2 Si , β- FeSi 2 and SiGe are extensively tested by DFT method with B3LYP, BLYP and M05 functionals, and dielectric constants simulated by the present method are in good agreement with experimental values. Seebeck coefficients simulated by the present method are in reasonable good agreement with experiments and temperature dependence of Seebeck coefficients basically follows experimental results as well. The present method works much better than the conventional energy band structure theory for Seebeck coefficients of three semiconductors mentioned above. Simulation with periodic boundary condition can be generalized directly to treat with doped semiconductor in near future.


1898 ◽  
Vol 62 (379-387) ◽  
pp. 250-266 ◽  

In several previous communications we have described the investigations made by us on the dielectric constants of various frozen organic bodies and electrolytes at very low temperatures. In these researches we employed a method for the measurement of the dielectric constant which consisted in charging and discharging a condenser, having the given body as dielectric, through a galvanometer 120 times in a second by means of a tuning-fork interrupter. During the past summer we have repeated some of these determinations and used a different method of measurement and a rather higher frequency. In the experiments here described we have adopted Nernst’s method for the measurement of dielectric constants, using for this purpose the apparatus as arranged by Dr. Nernst which belongs to the Davy-Faraday Laboratory.


1992 ◽  
Vol 258 ◽  
Author(s):  
Z. Jing ◽  
J. L. Whitten ◽  
G. Lucovsky

ABSTRACTWe have performed ab initio calculations and determined the bond-energies and vibrational frequencies of Si-H groups that are: i) attached to Si-atoms as their immediate, and also more distant neighbors; and ii) attached to three O-atoms as their immediate neighbors, but are connected to an all Si-atom matrix. These arrangements simulate bonding geometries on Si surfaces, and the calculated frequency for i) is in good agreement with that of an Si-H group on an Si surface. To compare these results with a-Si:H alloys it is necessary to take into account an additional factor: the effective dielectric constant of the host. We show how to do this, demonstrating the way results of the ab initio calculations should then be compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document