alloy films
Recently Published Documents


TOTAL DOCUMENTS

2256
(FIVE YEARS 206)

H-INDEX

63
(FIVE YEARS 5)

Author(s):  
Gang Liu ◽  
Miao Wang ◽  
Jianjun Xu ◽  
Min Huang ◽  
Chen Wang ◽  
...  

Abstract Previous studies have dealt with Cr and its alloy films that exhibit promising characteristics as surface modification layers for antiwear, anticorrosive, and decorative applications. However, the effect of Ti alloying on the structure and mechanical properties of Cr films has not been studied. This work aimed to the structure and mechanical properties of Cr-Ti alloy films in the Cr-rich side. To this end, pure Cr, Cr-6 at.% Ti, Cr-11 at.% Ti, Cr-16 at.% Ti, and Cr-21 at.% Ti alloy films were prepared by magnetron sputtering, and the structure and mechanical properties of the films were evaluated. The results indicated that all the films exhibited a Cr-based growth with body-centered cubic structure, and increasing the Ti content decreased the (110) orientation growth of Cr basis. Ti alloying increased the hardness of the films, while leaded to a monotonic decrease in the modulus of the films. The first-principles method was employed to demonstrate that the reduced modulus was determined by the Ti alloying degree, rather than the orientation evolution of the films. The analysis of H/E value suggested that the wear resistance of the films was improved by Ti alloying. The mechanical properties of present Cr-Ti alloy films, and other Cr-based alloy films or metallic glasses in publications were compared and discussed. We proposed that Ti alloying is a considerable way to explore advanced mechanical properties of Cr-based alloy films.


2022 ◽  
pp. 153497
Author(s):  
Rebecca B. Cummings ◽  
Matthew S. Blackmur ◽  
Mateusz Grunwald ◽  
Andrew Minty ◽  
Paul Styman ◽  
...  

Author(s):  
Wenrun Cui ◽  
Meijia Song ◽  
Guixing Jia ◽  
Yu Wang ◽  
Wanfeng Yang ◽  
...  

Abstract Tin (Sn)-based anodes have drawn extensive attention for magnesium ion batteries (MIBs) owing to their low reaction potentials, high theoretical capacities, and compatibility with conventional electrolytes. However, their poor electrochemical reactivity, sluggish kinetics, and large volume changes have obstructed progresses. Additionally, a clear understanding of the Mg storage chemistry is crucial for the development of high-performance MIBs. Here, we prepared self-supporting In-Sn alloy films with different compositions and phase constitutions via a one-step magnetron co-sputtering. As benchmarked with pure Sn film, the single-phase and biphase In-Sn alloy films effectively trigger the alloying reaction of Sn with Mg and further increasing of In significantly improves the electrochemical reactivity of the In-Sn electrodes. More importantly, operando X-ray diffraction was performed to unveil the magnesiation/demagnesiation mechanisms of the In0.2Sn0.8, In0.2Sn0.8/In3Sn and In3Sn electrodes, showing that In0.2Sn0.8 and In3Sn display different Mg storage mechanisms when existing alone or biphase coexisting. Our findings highlight the significance of the electrode design and mechanism investigations for MIBs.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1539
Author(s):  
Yu-Hsuan Liang ◽  
Chia-Lin Li ◽  
Chun-Hway Hsueh

In the present work, Nbx-CoCrFeMnNi high entropy alloy films (HEAFs, 0 to 7.2 at.% Nb) were fabricated by radio frequency (RF) magnetron co-sputtering of CoCrFeMnNi alloy and Nb targets. The effects of Nb addition on the microstructures and mechanical properties of HEAFs were systematically investigated. For Nb-free film (0 at.% Nb), the face-centered cubic (FCC) peaks were identified in the X-ray diffraction (XRD) pattern. The addition of Nb resulted in a broadening of diffraction peaks, a decrease in peak intensity, and the vanishment of high-angle peaks. Transmission electron microscope (TEM) images indicated the formation of nanotwins at low Nb concentrations, and a transition from a single phase FCC solid solution to an amorphous phase was observed with the increasing Nb concentration. The films were strengthened with an increase in Nb concentration. Specifically, the hardness characterized by nanoindentation increased from 6.5 to 8.1 GPa. The compressive yield strength and fracture strength measured from micropillar compression tests were improved from 1.08 GPs and 2.56 GPa to 2.70 GPa and 5.76 GPa, respectively, whereas the fracture strain decreased from >29.4% (no fracture) to 15.8%. Additionally, shear banding was observed in the presence of amorphous phase.


Vacuum ◽  
2021 ◽  
pp. 110851
Author(s):  
Yuanxia Lao ◽  
Xiumin Lao ◽  
Yuqi Yin ◽  
Yucui Zhai ◽  
Yi Yang ◽  
...  

2021 ◽  
Vol 714 ◽  
pp. 121921
Author(s):  
Shuya Xing ◽  
Le Lei ◽  
Haoyu Dong ◽  
Jianfeng Guo ◽  
Feiyue Cao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document