Molecular Beam Epitaxially Deposited Amorphous Silicon

2000 ◽  
Vol 609 ◽  
Author(s):  
D. J. Lockwood ◽  
J.-M. Baribeau ◽  
M. Noël ◽  
J. C. Zwinkels ◽  
B. J. Fogal ◽  
...  

ABSTRACTWe have deposited a novel form of amorphous silicon through molecular beam epitaxy in an ultra-high vacuum. In particular, by depositing silicon atoms onto an optical quality fused quartz substrate at room temperature we have obtained a silicon-based material that lacks the periodicity that characterizes crystalline silicon but nevertheless has 98% of the density. Spectroscopic studies reveal that there are only trace amounts of hydrogen and other impurity atoms in this novel form of amorphous silicon, this contrasting dramatically with the case of conventional amorphous silicon. The Raman and optical spectroscopic properties of this form of amorphous silicon are contrasted with those of conventional amorphous silicon and sputtered amorphous silicon, and conclusions, regarding the amount of disorder, are drawn. Finally, the device implications of this novel form of amorphous silicon are discussed.

2002 ◽  
Vol 715 ◽  
Author(s):  
D. J. Lockwood ◽  
J.-M. Baribeau ◽  
M. Noël ◽  
J. C. Zwinkels ◽  
B. J. Fogal ◽  
...  

AbstractWe produce a novel form of amorphous silicon through ultra-high-vacuum molecular beam epitaxy. By depositing silicon atoms onto a fused quartz substrate at temperatures between 98 and 335°C, we obtain a silicon-based material that lacks the characteristic periodicity of crystalline silicon but nevertheless has 98% of its density. The impurity content of this material is studied through infrared and secondary ion mass spectroscopies. The primary impurity found is oxygen, with hydrogen and carbon atoms also being found at trace levels. The Raman spectra of the amorphous silicon films are measured and the results, as they relate to the presence of disorder, are interpreted. We also use this molecular beam epitaxy method to fabricate a number of amorphous silicon superlattices, comprised of thin layers of amorphous silicon separated with even thinner layers of SiO2. The optical properties of the films and superlattices are contrasted.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


1978 ◽  
Vol 45 ◽  
pp. 287-291 ◽  
Author(s):  
Y. Shiraki ◽  
Y. Katayama ◽  
K.L.I. Kobayashi ◽  
K.F. Komatsubara

1987 ◽  
Vol 102 ◽  
Author(s):  
M. Cerullo ◽  
Julia M. Phillips ◽  
M. Anzlowar ◽  
L. Pfeiffer ◽  
J. L. Batstone ◽  
...  

ABSTRACTA new in-situ rapid thermal annealing (RTA) apparatus which can be used to anneal entire wafers in an ultra high vacuum environment has been designed to be used in conjunction with the epitaxial growth of heterostructures. Drastic improvement in the crystallinity of CaF2/Si(100) can be achieved with RTA, and our results suggest that RTA can be used as an on-line processing technique for novel epitaxial structures.


2004 ◽  
Vol 16 (33) ◽  
pp. S3451-S3458 ◽  
Author(s):  
R Macovez ◽  
C Cepek ◽  
M Sancrotti ◽  
A Goldoni ◽  
L Petaccia ◽  
...  

Author(s):  
Denis S . Kryuchkov ◽  
Gulnara A. Vishnyakova ◽  
Ksenia Yu. Khabarova ◽  
Konstantin S. Kudeyarov ◽  
Nikita O. Zhadnov ◽  
...  

Here we consider creation of laser systems stabilized by external macroscopic monolithic Fabry – Perot cavities made of single-crystalline silicon operating at cryogenic temperatures. Fundamental thermal noise floor for fractional frequency instability was evaluated with its dependency on cavity’s spacer, mirror’s substrate and coatings material. Silicon cavities with dielectric SiO2 /Ta2 O5 and crystalline GaAs/InGaAs mirror coatings were created, its finesse at room temperatures was investigated. Two ultra-high vacuum optical cryostats were developed. Two ultra-stable laser systems based on cavities with dielectric mirrors were assembled. Comparison scheme via beat signal frequency counting was implemented for the characterization purpose. Different noise sources presenting at assembled systems are considered. Its impact to relative frequency instability of our laser systems is being explored.


1998 ◽  
Vol 9 (1-4) ◽  
pp. 437-444 ◽  
Author(s):  
R. Tubino ◽  
A. Borghesi ◽  
L. Dalla Bella ◽  
S. Destri ◽  
W. Porzio ◽  
...  

2002 ◽  
Vol 715 ◽  
Author(s):  
A.J. Stoltz ◽  
Whitney Mason ◽  
J.D. Benson ◽  
J.H. Dinan ◽  
K. McCormack ◽  
...  

AbstractAs a first step toward an understanding of the chemical and structural role of hydrogen in hydrogenated amorphous silicon, we utilized electron beam evaporation in an ultra high vacuum environment to deposit films of amorphous silicon and systematically dosed these films with atomic hydrogen during deposition. Secondary Ion Mass Spectroscopy (SIMS) data indicated that hydrogen concentration can be varied from the detection limit of SIMS to a value in excess of 1021 atoms cm-3. The intentional addition of hydrogen caused the concentration to fall from in an excess of 1021 atoms*cm-3 to below 1018 atoms*cm-3.


Sign in / Sign up

Export Citation Format

Share Document