In-Situ Electron Microscopy Studies of the Effect of Solute Segregation on Grain Boundary Anisotropy and Mobility in an Al-Zr Alloy

2004 ◽  
Vol 839 ◽  
Author(s):  
Mitra L. Taheri ◽  
Eric Stach ◽  
Velimir Radmilovic ◽  
Hasso Weiland ◽  
Anthony D. Rollett

ABSTRACTThe presence of impurities in aluminum alloys is of great interest with respect to microstructural properties, specifically, the effect of solute on texture and anisotropy. This paper presents new evidence of the pronounced effect of solute drag based on in-situ annealing and Electron Backscatter Diffraction experiments of Zr-rich Al alloys subject to prior strain. A compensation effect was found for grain boundary mobility maxima for specific boundary types. Trends in activation energy as a function of boundary type support the observations of a compensation effect with respect to temperature. Evidence for irregular motion of boundaries from in-situ observations is discussed in reference to new theoretical results that suggest that boundaries migrating in the presence of solutes should move sporadically provided that the length scale at which observations are made is small enough. A study of both boundary motion and solute segregation to specific boundary types using Scanning Transmission Electron Microscopy and in-situ TEM is presented.

2005 ◽  
Vol 495-497 ◽  
pp. 1121-1130 ◽  
Author(s):  
Stuart I. Wright ◽  
David P. Field ◽  
Matthew M. Nowell

While electron backscatter diffraction (EBSD) has become an established technique within materials characterization labs around the world, the technique is still relatively young and new applications are continuing to emerge. Automated EBSD or Orientation Imaging Microscopy (OIM) systems are being used in combination with other equipment within the scanning electron microscope (SEM) to perform in-situ measurements. This includes tensile stages for observing changes in local orientation during deformation and heating stages for studying orientation changes arising during recrystallization and grain growth as well as phase transformations. In addition to these temporally three-dimensional studies, spatially three-dimensional studies can be performed by in-situ serial sectioning in microscopes equipped with both electron and focused ion beams. These in-situ techniques are briefly reviewed. The review is followed by a detailed analysis of in-situ heating experiments on copper. The movement of grain boundaries during recrystallization and subsequent grain growth are tracked. The effect of orientation relationships on grain boundary mobility and nucleation are explored. No special relationship with grain boundary mobility was observed. However, twins appear to play a significant role in the nucleation process.


2004 ◽  
Vol 819 ◽  
Author(s):  
Mitra L. Taheri ◽  
Anthony D. Rollett ◽  
Hasso Weiland

AbstractThis paper investigates the effect of solute in Al alloys on grain boundary character and mobility based on experiments in which individual boundaries migrate under a stored energy driving pressure acquired from prior plastic strain; among those studied are Zr, Fe and Si. A compensation effect is noted for both alloys studied with respect to both temperature and solute content. As supported by the literature, boundaries exhibit a maximum mobility for a 38-39°<111> misorientation in initial annealing experiments; this mobility maximum is asymmetric with a sharp cutoff below 38-39° but a more gradual decrease at misorientations beyond 40°. The presence of a minimum at 38-39° is found at both higher temperatures and higher solute concentrations. A shift in texture dependency with solute and temperature is also observed. This transition from a local mobility maximum to a minimum is discussed within the context of recent developments in solute drag theory.


2004 ◽  
Vol 467-470 ◽  
pp. 997-1002 ◽  
Author(s):  
Mitra L. Taheri ◽  
Anthony D. Rollett ◽  
Hasso Weiland

Aluminum alloys exhibit recrystallization kinetics that vary strongly with composition. The conventional understanding is that certain alloying elements, e.g. chromium, retard grain boundary motion due to the formation of fine dispersions of second phase particles, giving rise to particle drag of boundaries. There is countervailing evidence, however, that suggests that solute drag provides a stronger influence on grain boundary mobility. This paper presents new evidence for a pronounced effect of solute based on experiments in which individual boundaries migrate under the driving pressure of stored energy from prior plastic strain. As supported by the literature, boundaries exhibit a maximum mobility for a 38-39 degree <111> misorientation in initial annealing experiments. Specifically, this mobility maximum is asymmetric with a sharp cutoff below 38-39 degrees but a more gradual decrease at misorientations beyond 40 degrees. The occurrence of other, smaller mobility peaks is discussed within the context of the sharpening of evolving maxima with discussed within the context of the sharpening of evolving maxima with increased recrystallization. The presence of a minimum at 38-39 degrees is found at both higher temperatures and higher solute concentrations. This transition from a local mobility maximum to a minimum is discussed within the context of recent theories solute drag activity.


2008 ◽  
Vol 14 (S2) ◽  
pp. 436-437 ◽  
Author(s):  
G Yang ◽  
Y Zhao ◽  
K Sader ◽  
A Bleloch ◽  
RF Klie

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


2004 ◽  
Vol 467-470 ◽  
pp. 935-940 ◽  
Author(s):  
Sandra Piazolo ◽  
Vera G. Sursaeva ◽  
David J. Prior

First results from grain growth experiments in a columnar structured Al foil show several interesting features: (a) the grain size distribution remains heterogeneous even after up to 300 min. annealing and (b) the Von Neumann-Mullins relation is not always satisfied. To clarify the underlying reasons for these features, in-situ heating experiments within a Scanning Electron Microscope (SEM) were combined with detailed Electron Backscatter Diffraction (EBSD) analysis. These show that the movement of boundaries can be strongly heterogeneous. For example, the complete replacement of one grain by a neighbouring grain without significant change of the surrounding grain boundary topology is frequently seen. Experiments show that grain boundary energy and/or mobility are anisotropic both with respect to misorientation and orientation of grain boundary plane. Low energy and/or mobility boundaries are commonly low angle boundaries, twin boundaries and boundaries that form traces to a low index plane of at least one of the adjacent grains. As a consequence the Von Neumann-Mullins relation is not always satisfied.


Sign in / Sign up

Export Citation Format

Share Document