Optical Responses of Conjugated Polymers by TDDFT in Real-Space and Real-Time Approach
ABSTRACTThe time dependent density functional theory (TDDFT) has applied to study the optical responses of the conjugated polymers such as poly(p-phenylenevinylene) and poly(9, 9-dialkyl-fluorene). In our study, the real-space grid representation is used for the electron wavefunctions in contrast to a conventional basis set on each atom. In the calculations of the optical responses, the real-time approach is employed, where we follow the linear responses of the systems under externally applied perturbations in the real time. Since a real polymer is too large to handle, we have calculated the oligomers with different length and observed the spectrum peak is redshifted as the length of oligomer increases. The property of the polymer is extrapolated as the infinitely long oligomer. The estimated polymer spectra agree with the experiments reasonably well.