Influence of the Substrate Temperature on the Texture of MgO Films Grown by Ion Beam Assisted Deposition

2005 ◽  
Vol 868 ◽  
Author(s):  
Liliana Stan ◽  
Paul N. Arendt ◽  
Raymond F. DePaula ◽  
Igor Usov ◽  
James R. Groves

AbstractThe variation in the substrate temperature during ion beam assisted deposition (IBAD), which employs the use of energetic ions to bombard a growing film, has been shown to influence the quality of crystalline texture in MgO films. Determining the acceptable deviation from the optimum ion to molecule ratio for different substrate temperatures establishes the optimum MgO deposition conditions. For each fixed deposition temperature, a set of samples was produced by varying the ion assist beam current from sample to sample while keeping the deposition rate constant. In this way, the ion to molecule ratio was modified and the range of achieving well textured films was determined. The investigation of the MgO texture dependence on the substrate temperature reveals that the best in-plane alignment is obtained at ˜ 25°C. At this temperature, MgO films with in-plane orientation distribution as low as 3.7° full width at half maximum (FWHM) have been attained. MgO films deposited at temperatures higher than 100°C have broad in-plane alignment. Although, the deposition at the lowest temperature (-150°C) did not improve the in-plane texture, the acceptable deviation from the optimum ion to molecule ratio for achieving biaxially textured films was the largest. As a trend, the acceptable ion to molecule deviation decreases with increasing substrate temperature. This is especially important for continuous IBAD MgO depositions where less restrictive conditions are desired.

1988 ◽  
Vol 131 ◽  
Author(s):  
Kenji Gamo ◽  
Susumu Namba

ABSTRACTThe chtaracteristics of ion beam assisted deposition are discussed and compared with those of photon beam assisted deposition. Effects of various deposition parameters including ion species, beam energy and substrate temperature are discussed. Deposited films usually include impurities such as C and O. Inclusion of oxygen takes place by enhanced oxidation by background oxygen and may be reduced by depositing in a clean vacuum. Promising applications of maskless ion beam assisted deposition are also discussed.


1991 ◽  
Vol 219 ◽  
Author(s):  
R. I. Johnson ◽  
G. B. Anderson ◽  
S. E. Ready ◽  
J. B. Boyce

ABSTRACTLaser crystallization of a-Si thin films has been shown to produce materials with enhanced electrical properties and devices that are faster and capable of carrying higher currents. The quality of these polycrystalline films depends on a number of parameters such as laser energy density, shot density, substrate temperature, and the quality of the starting material. We find that the average grain size and transport properties of laser crystallized amorphous silicon films increase substantially with laser energy density, increase only slightly with laser shot density, and are unaffected by substrate temperatures of up to 400°C. The best films are those processed in vacuum but films of fair quality can also be obtained in air and nitrogen atmospheres.


1996 ◽  
Vol 446 ◽  
Author(s):  
J. U. Yoon ◽  
G. N. Kim ◽  
J‐H Y. Krska ◽  
J. E. Chung ◽  
L. P. Allen ◽  
...  

AbstractThe impact of two implant parameters, namely the implant substrate temperature and implant beam current, on the physical and electrical properties of SIMOX buried oxide are investigated. Three implant substrate temperatures, 540 °C, 590 °C, and 640 °C and three beam current, 45 mA, 55 mA, 65 mA, are investigated. Results from thermal conductivity and surface photovoltage measurements show no apparent differences between samples. Results from interface roughness shows a decreasing trend as the substrate temperature and beam current increases. For the samples with different implant temperatures, the high‐field conduction shows an opposite dependence for top‐interface versus substrate injection. This behavior can be explained by the conservation of silicon in the buried oxide. Correlation of surface photovoltage and high‐field conduction shows weak positive dependency while that of interface roughness and high‐field conduction shows dependency only when the sets of temperature variation and beam current variation are decoupled.


1990 ◽  
Vol 181 ◽  
Author(s):  
F. Meyer ◽  
D. Bouchier ◽  
V. Stambouli ◽  
G. Gautherin

ABSTRACTRefractory metal compounds, such as nitrides or borides, are attractive candidates for diffusion barrier between silicon and aluminium in VLSI technology. We studied tungsten boride films deposited on silicon (100) by ion beam sputter deposition (IBSD).The tungsten boride films were prepared by sputtering a W2B5 target by argon ions with energy ranging from 0.5 to 2keV. The substrate temperature was varied from room temperature to 630°C. Finally, the films were patterned by selective wet etching in order to characterize the resulting Schottky diodes. We observed that a boron loss occurs during deposition, probably due to the backscattering of sputtered boron on previously deposited W atoms. By in situ AES analysis, we verified that a 5 nm thick layer acts as a diffusion barrier for silicon up to about 630°C, for all deposition conditions. The films properties were found to depend weakly on the primary ion energy and on the substrate temperature. All the films have resistivity at room temperature in the range of about 250 µΩ cm. The measured density, in the range of 12 g/cm3, is very close to that of WB2 bulk material, while the intrinsic stress of the films remains compressive and in the range of -lGPa. This value is notably lower than what we measured for pure tungsten prepared under similar deposition conditions.


1988 ◽  
Vol 128 ◽  
Author(s):  
Saliman A. Isa ◽  
P. K. Ghosh ◽  
P. G. Kornreich

ABSTRACTZnO thin films were deposited by ion-beam sputtering technique. Preliminary results show that the films are stoichiometric and crystalline in nature. The microstructure of ZnO films obtained depends very much on the process parameters. Among these parameters is the substrate temperature whose effect has been carefully examined.ZnO films were deposited with substrate temperatures ranging from 200°C to 350°C. We observed that the sheet resistance of the films varies with their microstructure. In this investigation, a sheet resistance of 6.6 Mega-ohms per square is measured on a dense film deposited at a substrate temperature of 325°C.We present in this paper a correlation between the film's microstructure and stoichiometry with some of it's electrical properties.


1992 ◽  
Vol 279 ◽  
Author(s):  
T. P. Sjoreen ◽  
H.-J. Hinneberg ◽  
M. F. Chisholm

ABSTRACTThe formation of a buried IrSi3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450–550°C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi3 layer is produced at 550°C by implanting ≥ 3.4 × 1017 Ir/cm2 and subsequently annealing for 1 h at 1000°C plus 5 h at 1100°C. At a dose of 3.4 × 1017 Ir/cm2, the thickness of the layer varied between 120 and 190 nm and many large IrSi3 precipitates were present above and below the film. Increasing the dose to 4.4 × 1017 Ir/cm2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved.


1987 ◽  
Vol 93 ◽  
Author(s):  
Alice E. White ◽  
K. T. Short ◽  
L. N. Pfeiffer ◽  
K. W. West

ABSTRACTWe have studied buried oxide formation as a function of implantation and annealing conditions. The layers appear to form via a nucleation and growth process, so the quality of the oxide and the perfection of the overlying crystalline Si layer depend more strongly on the substrate temperature during implantation than on the annealing temperature. Since it is easier to observe the layer formation process in a thin (<1000Å) layer, we concentrated on sub-stoichiometric doses and chose substrate temperatures below 400°C to stay in a homogeneous nucleation regime. Then we varied the annealing temperature from 1150°C to 1407°C. Modeling the coalescence of the oxide layer as a thermally-activated process yields activation energies of approximately 6 eV, suggesting that crystalline damage removal may be the bottleneck for this substrate temperature regime.


1988 ◽  
Vol 128 ◽  
Author(s):  
E. P. Donovan ◽  
C. A. Carosella ◽  
D. Van Vechten

ABSTRACTThe annealing behavior of the optical properties of silicon nitride films (Si1-xNx) is described for films fabricated by ion beam assisted deposition. The data are needed for the precise manufacture of optical filters, where the index of refraction must be predicted from deposition parameters and film annealing history.The reflection of homogeneous, amorphous samples deposited on (100) silicon substrates was measured from 500 to 3120 nm. Fits to the interference spectra were obtained over the range 1000 to 3120 nm to obtain the index of refraction vs wavelength as a function of film nitrogen content. Nitrogen atom fraction was varied from.2 to.58 by variation of the incident relative fluxes of nitrogen ion beam current to evaporant silicon flux. The films were annealed in argon at 450 C, 600 C, 750 C, and 1100 C and the measurements repeated. The systematic shifts in index of refraction with annealing temperature are described.


Sign in / Sign up

Export Citation Format

Share Document