Analysis of the effect of ultrasonic vibration on nanofluid as coolant in engine radiator
The paper discusses the combined methods of increasing heat transfer, effects of adding nanofluids and ultrasonic vibration in the radiator using radiator coolant (RC) as a base fluid. The aim of the study is to determine the effect of nanoparticles in fluids (nanofluid) and ultrasonic vibration on the overall heat transfer coefficient in the radiator. Aluminum oxide nanoparticles of 20–50 nm in size produced by Zhejiang Ultrafine powder & Chemical Co, Ltd China were used, and the volume concentration of the nanoparticles varied from 0.25 %, 0.30 % and 0.35 %. By adjusting the fluid flow temperature of the radiator from 60 °C to 80 °C, the fluid flow rate varies from 7 to 11 lpm. The results showed that the addition of nanoparticles and ultrasonic vibration to the radiator coolant increases the overall heat transfer coefficient by 62.7 % at a flow rate of 10 liter per minute and temperature of 80 °C for 0.30 % particles volume concentration compared to pure RC without vibration. The effect of ultrasonic vibration on pure radiator coolant without vibration increases the overall heat transfer coefficient by 9.8 % from 385.3 W/m2·°C to 423.3 W/m2·°C at a flow rate of 9 liter per minute at a temperature of 70 °C. The presence of particles in the cooling fluid improves the overall heat transfer coefficient due to the effect of ultrasonic vibrations, nanofluids with a volume concentration of 0.25 % and 0.30 % increased about 10.1 % and 15.7 %, respectively, compared to no vibration. While, the effect of nanoparticles on pure radiator coolant at 70 °C enhanced the overall heat transfer coefficient by about 39.6 % at a particle volume concentration of 0.35 % compared to RC, which is 390.4 W/m2·°C to 545.1 W/m2·°C at 70 °C at a flow rate of 10 liter per minute