scholarly journals CONCEPTUAL DESIGN OF THE WING OR FUSELAGE STRUCTURE OF A MAINLINE AIRCRAFT MADE OF METAL-POLYMER COMPOSITE MATERIALS

2021 ◽  
pp. 74-82
Author(s):  
Valery Pechenyuk ◽  
◽  
Yuri Popov ◽  

The analysis of existing aircraft structures made of metal-polymer composite materials is carried out, and a list of them with passport characteristics is compiled. The Fokker F-27 Friendship, Boeing-777 and Airbus A380, which use ARALL and GLARE materials, were selected as the aircraft under study. Formulas are determined and the distribution of normal force flows between metal and composite elements in the composition of MPCM based on aluminum sheets (aluminum-fiberglass – SIAL- 1-1, SIAL-3-1 and SIAL-1441 (9/8)) and titanium alloys (samples of titanium-carbon fiber from the patent-Example 1 and Example 3). To determine these parameters, the formulas used for a composite structure made of different materials are used. On the basis of the specification known MPCM the modified formula mixture rule for calculating the strength of new materials with a given set of orientation angles of PCM and the presence of layers of sheet metal, a comparison with standard mechanical characteristics and to show the efficiency of these formulas. Using these formulas, you can determine the strength characteristics for an arbitrary composition of the MPCM package. The features of the choice of design permissible stresses for the design of the airframe of a mainline aircraft made of metal-polymer composite material are highlighted. The concept of designing aircraft airframe elements using MPCM is considered. The results of this work will allow us to determine the rational components of the metal-polymer composite material and the structure of their distribution in the airframe design at the preliminary design stage.

2021 ◽  
Vol 887 ◽  
pp. 105-109
Author(s):  
A.M. Iuvshin ◽  
Y.S. Andreev ◽  
S.D. Tretyakov

This paper studies deployable elements which are used in satellites and different terrestrial antenna devices. Many deployable elements are made from steel or thermoset polymer composite materials and have the following disadvantages like length limitation of deployable elements, labour intensity of manufacturing process of deployable elements etc. For this purpose a deployable tube boom element was chosen and a forming method for manufacturing deployable tube element from thermoplastic polymer composite material was developed.


2021 ◽  
pp. 28-34
Author(s):  
E. A. Kosenko ◽  
◽  
P. E. Demin ◽  

The mechanical properties of polymer composite materials largely depend on the interfacial phenomena occurring on the interface between the matrix and reinforcing material. The addition of components to the matrix of polymer composite materials that retain their viscoelastic state during the molding process of the products makes possible to locally change the deformation-and-strength properties of a finished product, adapting it to the specified operating conditions. The viscoelastic components in the hybrid matrix form the third phase of the polymer composite material. Increasing the efficiency of interfacial layers of polymer composite materials with various types of hybrid matrices is the most important task of their development. The samples for microanalysis of the polymer composite material structure with various types of hybrid matrices were molded using the prepreg technology by vacuum molding on the basis of BT400 biaxial basalt fabric. Technical wax, anaerobic (Loctite 638) and organosilicon (Yunisil-9628) polymer materials were selected as the viscoelastic components of the hybrid matrix. In order to explain the reasons for the change in the deformation-and-strength properties of the obtained basalt plastics with various viscoelastic components in the composition of the hybrid matrix, microanalysis of their structure was carried out. A mechanism for choosing a scheme for the location of viscoelastic components in a matrix of polymer composite materials based on the provisions of combinatorial optimization is described.


1998 ◽  
Vol 13 (1) ◽  
pp. 211-216 ◽  
Author(s):  
Shlomit Wizel ◽  
Ruslan Prozorov ◽  
Yair Cohen ◽  
Doron Aurbach ◽  
Shlomo Margel ◽  
...  

Ultrasound radiation is used to prepare a composite material made of polymethylacrylate and amorphous iron nanoparticles. Two preparation methods are described, in which the monomer, methylacrylate, is the starting material. The magnetic properties of the composite material are measured and reveal a superparamagnetic behavior.


Author(s):  
Ch. N. Nguyen ◽  
M. V. Sanyarova ◽  
I. D. Simonov-Emel’yanov

Objectives. The aim is to calculate the composition of dispersion-filled polymer composite materials with different fillers and structures and to highlight differences in the expression of said composition in mass and volume units.Methods. The paper presents the calculation of compositions in mass and volume units for various types of structures comprising dispersion-filled polymer composite materials according to their classification: diluted, low-filled, medium-filled, and highly-filled systems.Results. For calculations, we used fillers with densities ranging from 0.00129 (air) to 22.0 g/cm3 (osmium) and polymer matrices with densities between 0.8 g/cm3 and 1.5 g/cm3 , which represent almost all known fillers and polymer matrices used to create dispersion-filled polymer composite materials. The general dependences of the filler content on the ratio of the filler density to the density of the polymer matrix for dispersion-filled polymer composite materials with different types of dispersed structures are presented. It is shown that to describe structures comprising different types of dispersion-filled polymer composite materials (diluted, low-filled, medium-filled, and highly-filled) it is necessary to use only the volume ratios of components in the calculations. Compositions presented in mass units do not describe the construction of dispersion-filled polymer composite material structures because using the same composition in volume units, different ratios of components can be obtained for different fillers.Conclusions. The dependences of the properties of dispersion-filled polymer composite materials should be represented in the coordinates of the property – content of the dispersed phase only in volume units (vol % or vol. fract.) because the structure determines the properties. Compositions presented in mass units are necessary for receiving batches upon receipt of dispersion-filled polymer composite materials. Formulas are given for calculating and converting dispersion-filled polymer composite material compositions from bulk to mass units, and vice versa.


2013 ◽  
Vol 5 (10) ◽  
pp. 4093-4099 ◽  
Author(s):  
Sudarshan Narayanan ◽  
Jihoon Choi ◽  
Lisa Porter ◽  
Michael R. Bockstaller

Author(s):  
A. Aakash ◽  
S. Selvaraj

Composite materials have the great potential and widely used as building material in numerous applications. Polymer composite material obtains the necessary properties in a controlled significant degree by the selection of strands and lattice. The properties of the materials have been selected by choosing the correct proportion of matrix and reinforcements. To build the quality of the material by expanding the fiber substance of the material. In this current examination, the mechanical properties of the glass fiber and graphite is strengthened with epoxy polymer composite were considered. Here the open embellishment method was received for the manufacture of the polymer composite The mechanical properties, for example, rigidity, compression quality, sway quality and water ingestion test was resolved according to the ASTM norms. The mechanical properties were improved as the filaments support content expanded in the grid material.


Author(s):  
I. V. Cheremukhina

The use of various physical influences is an economical and highly effective direction for regulating and improving the characteristics of the modified reinforced polymer composite materials developed in this work. The methods of energy effects studied in this work were used at the stage of impregnation of technical threads of various chemical nature with an oligomeric binder and a hardener (when preparing prepregs by the traditional method) or with a binder solution and a curing system (when preparing prepregs by the method of layered application of components) Based on the conducted research, a classification of the applied methods of physical modification according to the principle of the influence of energy fields is proposed. The studied methods of energy effects are divided into orienting and energetically energizing effects. The first group includes treatments with constant magnetic (PMP) or electric fields (PEP), and constant mechanical loads. The second group includes energy effects that have a wave nature (energetically energizing), and vibration, ultrasonic effects, and ultraviolet radiation are attributed to them. Modification methods of the first group contribute to a decrease in the mobility of binder molecules during curing, while the formation of branches of polymer chains occurs during the curing process, which leads to a predominant increase in the destructive stress during static bending. Energetically energizing effects contribute to the relative acceleration of the process of linear growth of polymer chains during curing, which is accompanied by the formation of a more sparsely cross-linked mesh structure, which leads to a predominant increase in impact strength. Of the two competing processes in the curing of epoxy oligomers, this one requires a higher activation energy, which is confirmed by the results of studies. Analyzing the results obtained, it can be concluded that the modification methods used in the work allow not only to obtain polymer composite materials with high strength characteristics, but also to directly adjust the properties of composites depending on the requirements for the products. Orienting modification methods lead to hardening of the resulting polymer composite material with a predominant increase in the destructive stress during static bending from 20 to 47%. When using energetically energizing influences in the technology of producing reinforced reactoplasts, the impact strength increases mainly from 19 to 40%.


Sign in / Sign up

Export Citation Format

Share Document