scholarly journals Machine Learning in Marketing: Overview, Learning Strategies, Applications, and Future Developments

2020 ◽  
Vol 14 (3) ◽  
pp. 173-236 ◽  
Author(s):  
Vinicius Andrade Brei
Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


Author(s):  
Staffan Arvidsson McShane ◽  
Ernst Ahlberg ◽  
Tobias Noeske ◽  
Ola Spjuth

2018 ◽  
Vol 20 (3) ◽  
pp. 302-320 ◽  
Author(s):  
Elisa Cuadrado-Godia ◽  
Pratistha Dwivedi ◽  
Sanjiv Sharma ◽  
Angel Ois Santiago ◽  
Jaume Roquer Gonzalez ◽  
...  

Author(s):  
Prayag Tiwari ◽  
Brojo Kishore Mishra ◽  
Sachin Kumar ◽  
Vivek Kumar

Sentiment Analysis intends to get the basic perspective of the content, which may be anything that holds a subjective supposition, for example, an online audit, Comments on Blog posts, film rating and so forth. These surveys and websites might be characterized into various extremity gatherings, for example, negative, positive, and unbiased keeping in mind the end goal to concentrate data from the info dataset. Supervised machine learning strategies group these reviews. In this paper, three distinctive machine learning calculations, for example, Support Vector Machine (SVM), Maximum Entropy (ME) and Naive Bayes (NB), have been considered for the arrangement of human conclusions. The exactness of various strategies is basically inspected keeping in mind the end goal to get to their execution on the premise of parameters, e.g. accuracy, review, f-measure, and precision.


2020 ◽  
Vol 33 ◽  
pp. 3770-3774
Author(s):  
Timothy Dhayakar Paul ◽  
Navaneeth Malingan ◽  
P.M. Sneha Angeline

2019 ◽  
Vol 26 (8) ◽  
pp. 601-619 ◽  
Author(s):  
Amit Sagar ◽  
Bin Xue

The interactions between RNAs and proteins play critical roles in many biological processes. Therefore, characterizing these interactions becomes critical for mechanistic, biomedical, and clinical studies. Many experimental methods can be used to determine RNA-protein interactions in multiple aspects. However, due to the facts that RNA-protein interactions are tissuespecific and condition-specific, as well as these interactions are weak and frequently compete with each other, those experimental techniques can not be made full use of to discover the complete spectrum of RNA-protein interactions. To moderate these issues, continuous efforts have been devoted to developing high quality computational techniques to study the interactions between RNAs and proteins. Many important progresses have been achieved with the application of novel techniques and strategies, such as machine learning techniques. Especially, with the development and application of CLIP techniques, more and more experimental data on RNA-protein interaction under specific biological conditions are available. These CLIP data altogether provide a rich source for developing advanced machine learning predictors. In this review, recent progresses on computational predictors for RNA-protein interaction were summarized in the following aspects: dataset, prediction strategies, and input features. Possible future developments were also discussed at the end of the review.


Sign in / Sign up

Export Citation Format

Share Document