scholarly journals Research and development of genetically engineered soybean using insect-resistance genes derived from Bacillus thuringiensis

2020 ◽  
Vol 18 (1) ◽  
pp. 1-21
Author(s):  
Le Thi Thu Hien ◽  
Pham Le Bich Hang ◽  
Nguyen Tuong Van ◽  
Le Thi Minh Thanh ◽  
Dao Thi Hang ◽  
...  

Soybean (Glycine max) is one of the crops which have high economic value and serve for food, feed and process of many countries around the world. However, there are many factors affecting the productivity of soybean, of which insect pests and diseases are the most harmful agents. Therefore, an application of biotechnology to transfer insect resistance genes derived from a species of bacteria Bacillus thuringiensis can contribute to increase soybean yield and significantly reducing pesticide use. Currently, there are many insecticidal proteins detected from B. thuringiensis such as Cry, Cyt and Vip with a broad and specific spectrum belonged to several orders Lepidoptera, Diptera, Coleoptera, Homopera, and Nematoda. Numerous studies have been implemented over the world to transfer genes encoding these proteins in combination or modified forms to increase their toxicity. Several events of genetically engineered soybean with stacked traits of insect resistance and herbicide tolerance are commercialized and approved to be cultured in many countries such as MON 87701 × MON 89788 or DAS-81419-2. In Vietnam, studies on genetically engineered soybean with insect resistance trait has been carried out. Moreover, the exploitation, screening and selection of high biodiversity and indigenous B. thuringiensis strains which habors specific genes capable of killing targeted insects and serve as materials for plant transformation are great scientific meaning and potential practical application. This will be an important source of materials to create many soybean cultivars with good ability of insect resistance in order to meet specific needs.

2017 ◽  
Vol 35 (4) ◽  
pp. 155
Author(s):  
I Made Tasma

<p>ABSTRACT<br />One of the main constraints on cacao cultivation is disease and insect pest attacks causing significant yield loss.  The main insect pests and diseases on cacao plantation are cacao pod borer, cacao<br />fruit rot, vascular streak dieback and cacao mirids (Helopeltis spp.). Conventional breeding method to obtain new cacao clones resistant to insect pests and diseases is a slow process. It may take 1520 years to obtain a new superior clone. Applying DNA technology should expedite cacao breeding program. The article described the application of DNA technology currently available to expedite cacao breeding program for disease and insect resistance. Many genes and quantitative trait loci (QTLs) of important traits have been discovered related to cacao plant productivity and yield quality, disease and insect pest resistance traits. Modern genomic technologies as well as DNA marker have also been applied in cacao breeding program. Genetic transformation technology has been explored its application for cacao improvement. With the development of modern genomic technology, important gene/QTL discoveries would be faster to accelerate insect pest and disease resistant cultivar development. All these new DNA technologies have been assessed their potential applications for coping important pest and disease and for yield improvement. DNA technologies, mainly MAS and genomic-data based breeding technologies are ready to be applied to support breeding programs for main pest and disease resistance to enhance Indonesian cacao productivity and quality.<br />Keywords: Cacao, disease and insect resistance, genomics, DNA markers, genetic transformation, marker-assisted breeding<br /><br /></p><p>Abstrak</p><p>Salah satu kendala utama dalam budi daya kakao ialah serangan hama dan penyakit. Hama dan penyakit utama kakao adalah penggerek buah kakao (PBK), busuk buah kakao (BBK), vascular streak dieback (VSD), dan cacao mirids (Helopeltis spp.). Kegiatan pemuliaan tanaman kakao secara konvensional berjalan lambat dan perlu waktu panjang. Untuk menghasilkan satu varietas unggul diperlukan waktu 15-20 tahun. Aplikasi teknologi DNA (genomika melalui pemuliaan berbantuan marka dan rekayasa genetik) dapat mempercepat program pemuliaan tanaman kakao. Tulisan ini mengulas teknologi DNA yang tersedia saat ini dan potensi aplikasinya untuk mempercepat pemuliaan kakao tahan hama dan penyakit. Penemuan marka DNA dan gen/quantitative trait loci (QTL) kakao berkembang cukup pesat. Banyak gen dan QTL karakter penting telah diidentifikasi yang terkait ketahanan hama dan penyakit serta produktivitas tanaman. Teknologi genomika dan pemanfaatan teknik marker-assisted selection (MAS) juga telah diaplikasikan untuk pemuliaan kakao termasuk untuk karakter ketahanan terhadap hama dan penyakit. Teknologi rekayasa genetik telah diteliti untuk menganalisis potensi pemanfaatannya dalam perbaikan bahan tanam kakao. Dengan berkembangnya teknologi genomika modern, penemuan gen/QTL unggul dapat dipercepat, lebih efisien dan komprehensif untuk mempercepat perakitan varietas unggul kakao tahan hama dan penyakit. Teknologi DNA khususnya MAS dan pemuliaan berbasis data genom siap diaplikasikan untuk mendukung program perbaikan ketahanan tanaman kakao terhadap hama dan penyakit utama dalam rangka peningkatan produktivitas dan mutu kakao nasional. <br /><br /></p>


1984 ◽  
Vol 64 (4) ◽  
pp. 979-991 ◽  
Author(s):  
SUSAN E. WEAVER ◽  
SUZANNE I. WARWICK

Datura stramonium L. (Solanaceae) is an annual weed found in most temperate and subtropical regions of the world. It has been recorded from all the provinces of Canada except Newfoundland, but is most common in Ontario and Quebec. It occurs in waste places, gardens, barnyards and, increasingly, in cultivated fields. Datura stramonium serves as an alternate host for many insect pests and diseases of Solanaceous crops, such as tomatoes, tobacco and potatoes, and has both narcotic and medicinal properties due to its production of a variety of alkaloids. It has been used extensively as an experimental plant in studies of genetics, chromosome morphology and embryonic development.Key words: Weed biology, jimsonweed, Datura stramonium, distribution


2014 ◽  
Vol 20 (4) ◽  
Author(s):  
Adane Abraham

Genetic engineering (GE) technologies can contribute to improve crop productivity and quality in Ethiopia. Adoption of commercialized insect resistance and herbicide tolerance technologies can help to protect major crops such as cotton, maize, sorghum and small cereals from their main insect pests or prevent heavy weed-inflicted loss. Moreover, key production constraints such as  bacterial wilt of enset, late blight of potato, drought stress on crops like maize and wheat, lodging resistance on tef as well as low nutritive quality of native crops like enset and grasspea can be addressed by strengthening domestic GE research capacity and international collaboration. Cognizant of this potential, the Ethiopian government has made significant investment in modern biotechnology capacity building in the last decade. There has also been specific interest by cotton sector to boost its productivity by adopting insect resistance (Bt) technologies. However, the GE regulatory system based on the existing biosafety law is so stringent that it is not possible for the country to access useful technologies from abroad as well as initiate domestic GE research. Consequently, no GE experiment is approved so far, leaving the country at risk of missing out on the global GE revolution. To catch up and  harness the benefits of GE technologies, the country needs to create conducive regulatory environment, strengthen domestic GE capacity and devise a farsighted strategy.


Author(s):  
М. Є. Баташова

Представлено широкий огляд генетично модифіко-ваних культур за новими ознаками. На основі зібранихданих наведено характеристику основних ознак,притаманних сучасним біотехнологічним культурам:толерантність до гербіцидів, стійкість до пошкод-ження комахами, стійкість до вірусних хвороб таінші. Аналіз даних показав, що всі чужорідні гени,вбудовані в рослини, мають бактеріальне, рослиннеабо вірусне походження. Найбільшого розповсюджен-ня в світі набули генетично модифіковані лінії куку-рудзи та сої. In the article the wide review of genetically modified crops with new traits was presented. On the basis of the collected data the description of main traits that attended in biotech crops is pointed: herbicide tolerance, insect resistance, viral disease resistance et al. The analysis of data showed that all new genes built-in in plants had a bacterial, plant or viral origin. The genetically modified lines of maize and soybean have been got the most distribution in the world.


2016 ◽  
Vol 16 (1) ◽  
pp. 72
Author(s):  
M. Herman

<p>The main constraint encountered in the<br />utilization of plant genetic resources (PGR) in agriculture are<br />biotic stresses such as insect pests, plant diseases, and plant<br />parasitic nematodes. The application of genetic engineering<br />techniques create a great opportunity for crops improvements<br />particularly for insect and plant diseases resistance. Through<br />genetic engineering, genetically engineered (GE) crops have<br />been developed, of which having the new traits such as resistance<br />to insect pests, plant diseases, and herbicide tolerance.<br />GE crops are already widely grown and marketed in many<br />countries. Globally, GE crops that are commercialized consists<br />of four categories of traits, which are insect resistance (IR),<br />herbicide tolerance, (HT), the combined traits of IR and HT<br />(stacked genes), and virus resistance. Initially, GE crops had<br />been commercialized globally covering 1.7 million ha in 1996,<br />and the cropping area increased rapidly to reach about 134<br />million ha in 2009. Indonesia is known as a country rich in<br />PGR, that have very high value. One of environmentally<br />friendly technologies that can be applied in the utilization of<br />PGR in Indonesia, is genetic engineering. In Indonesia,<br />research on plant genetic engineering had started since 1997.<br />Commodities that are being researched to develop GE plants<br />limited on rice, potatoes and tomatoes. GE rice resistant to<br />stem borer (Scirpophaga incertulas), GE potato resistant to<br />late blight (Phytophthora infestans), and GE tomato resistant<br />to tomato yellow leaf curl virus (TYLCV) and cucumber<br />mosaic virus (CMV) have been successfully developed by<br />Research Center for Biotechnology of Indonesian Institute of<br />Science and Indonesian Center for Agricultural Biotechnology<br />and Genetic Resources Research and Development<br />(ICABIOGRAD). Those GE crops have been tested for their<br />resistance at the screenhouses, green houses of the biosafety<br />containment, and confined field trial.</p>


2021 ◽  
Author(s):  
Rana M. Sarfraz

Abstract The diamondback moth (DBM) is one of the most studied insect pests in the world, yet it is among the 'leaders' of the most difficult pests to control. It was the first crop insect reported to develop resistance to microbial Bacillus thuringiensis insecticides, and has shown resistance to almost every insecticide, including the most recent groups such as diamide. DBM is a highly invasive species. It may have its origin in Europe, South Africa or East Asia, but is now present wherever its cruciferous hosts exist and is considered to be the most universally distributed Lepidoptera. It is highly migratory and wind-borne adults can travel long distances to invade crops in other regions, countries and continents. Immature stages also hitchhike on plant parts and can establish in new areas. DBM costs the global economy an estimated US$4 -5 billion annually, but its impacts on local biodiversity and habitats in exotic ranges are unknown.


Author(s):  
Rene Van Acker ◽  
Motior Rahman ◽  
S. Zahra H. Cici

The global area sown to genetically modified (GM) varieties of leading commercial crops (soybean, maize, canola, and cotton) has expanded over 100-fold over two decades. Thirty countries are producing GM crops and just five countries (United States, Brazil, Argentina, Canada, and India) account for almost 90% of the GM production. Only four crops account for 99% of worldwide GM crop area. Almost 100% of GM crops on the market are genetically engineered with herbicide tolerance (HT), and insect resistance (IR) traits. Approximately 70% of cultivated GM crops are HT, and GM HT crops have been credited with facilitating no-tillage and conservation tillage practices that conserve soil moisture and control soil erosion, and that also support carbon sequestration and reduced greenhouse gas emissions. Crop production and productivity increased significantly during the era of the adoption of GM crops; some of this increase can be attributed to GM technology and the yield protection traits that it has made possible even if the GM traits implemented to-date are not yield traits per se. GM crops have also been credited with helping to improve farm incomes and reduce pesticide use. Practical concerns around GM crops include the rise of insect pests and weeds that are resistant to pesticides. Other concerns around GM crops include broad seed variety access for farmers and rising seed costs as well as increased dependency on multinational seed companies. Citizens in many countries and especially in European countries are opposed to GM crops and have voiced concerns about possible impacts on human and environmental health. Nonetheless, proponents of GM crops argue that they are needed to enhance worldwide food production. The novelty of the technology and its potential to bring almost any trait into crops mean that there needs to remain dedicated diligence on the part of regulators to ensure that no GM crops are deregulated that may in fact pose risks to human health or the environment. The same will be true for the next wave of new breeding technologies, which include gene editing technologies.


2002 ◽  
Vol 92 (2) ◽  
pp. 147-151 ◽  
Author(s):  
T.D. Paine ◽  
J.G. Millar

AbstractFor the first 150 years following their introduction, eucalypts planted in the California landscape were free of both insect pests and diseases. In the last 15 years, numerous herbivorous insect species have been introduced accidentally into the State and have caused significant damage to the trees. Several of these species, e.g. Phoracantha semipunctata (Fabricius), Phoracantha recurva Newman (Coleoptera: Cerambycidae) and Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae), have also been introduced into other parts of the world where eucalypts are grown, whereas others, e.g. Glycaspsis brimblecombei Moore (Hemiptera: Spondyliaspidae) and Eucalyptolyma maideni Froggatt (Hemiptera: Spondyliaspidae), are currently restricted to California and Australia. Research programmes have provided management solutions to individual pest problems, but as more pest species are introduced, these solutions must be integrated across broad geographic, horticultural, and economic scales, in a systems approach.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 511
Author(s):  
E.A. Baldwin

The promise of biotechnology has been slow to be realized, but some commercialized products are finding their way to supermarket shelves. Nevertheless, the future potential remains in the realm of speculation and may be on the verge of delivering some incredible benefits. Since the world population growth is predicted to double in the next 50 years, primarily in developing nations, food resources will become critical. In view of this prediction, we may need every trick in the book to feed the masses, which means either more land (wetlands, forests, and rain forests) will fall to the plow or there will need to be an increase in yields. Concurrently, a decrease in postharvest losses would also be crucial. Various authorities have estimated that 25% to 80% of harvested fruits and vegetables are lost due to damage and spoilage. Early biotech successes were developing plants with enhanced insect resistance (cotton, corn, and potato) and virus resistance (squash and papaya) and improved herbicide tolerance (cotton, soybean, and corn). The only commercialized transgenic fruit engineered for improved postharvest quality so far is the tomato. Future goals for biotechnology include increasing yield, extending shelf life, improving nutritional and flavor quality, and producing specialty proteins or other compounds. Genetically engineered food, however, has met rancorous resistance in Europe, New Zealand, and elsewhere; although, it is somewhat tolerated in the U.S. The U.S., Canada, and Japan lead the world in biotech acreage, with biotechnology accounting for 40% of cotton, 39% of soybeans, and 20% of corn acreage in the U.S. and 73 million acres worldwide.


1998 ◽  
Vol 353 (1376) ◽  
pp. 1751-1756 ◽  
Author(s):  
B. E. Tabashnik ◽  
Y. Liu ◽  
T. Malvar ◽  
D. G. Heckel ◽  
L. Masson ◽  
...  

Resistance to the insecticidal proteins produced by the soil bacterium Bacillus thuringiensis (Bt) has been documented in more than a dozen species of insect. Nearly all of these cases have been produced primarily by selection in the laboratory, but one pest, the diamondback moth ( Plutella xylostella ), has evolved resistance in open–field populations. Insect resistance to Bt has immediate and widespread significance because of increasing reliance on Bt toxins in genetically engineered crops and conventional sprays. Furthermore, intense interest in Bt provides an opportunity to examine the extent to which evolutionary pathways to resistance vary among and within species of insect. One mode of resistance to Bt is characterized by more than 500–fold resistance to at least one Cry1A toxin, recessive inheritance, little or no cross–resistance to Cry1C, and reduced binding of at least one Cry1A toxin. Analysis of resistance to Bt in the diamondback moth and two other species of moth suggests that although this particular mode of resistance may be the most common, it is not the only means by which insects can attain resistance to Bt.


Sign in / Sign up

Export Citation Format

Share Document