scholarly journals Production of nanoliposomes with piperine from black pepper (Piper nigrum) and its improved growth inhibitory activity on colorectal cancer cells

2021 ◽  
Vol 18 (4) ◽  
pp. 671-678
Author(s):  
Le Nhat Minh ◽  
Tran Thi Minh Anh ◽  
Tran Van Loc ◽  
Phung Thi Kim Hue ◽  
Do Thi Thao

Black pepper (Piper nigrum) is an autoicous and decorous vine cultivated in many local regions of Gia Lai. Black pepper is one of the most commonly consumed spices, and its pungency is due to the presence of alkaloids, such as piperine. This compound represents diverse biological activities, including anti-inflammatory, anticancer, antiviral, anti-larvicidal, pesticide, anti-alzheimer’s activities, etc. However, due to its poor solubility as well as its toxic effects at high use concentration, piperine is still in limit of pharmaceutical applications. In this study, we have used black pepper seed collected at Chu Se - Gia Lai to extract piperine. The compound extracted efficiency was approximately 18% with 96.7% of purity. Based on the obtained pure piperine, the hybrid nanopiperine-CD133 monoclonal antibody (mAb^CD133) complexes were fabricated with the nanoparticle size of about 170 nm, the polydispersity index (PDI) of 0.23 and the zeta potential of -9.4 mV. The nanocomplex was subjected for growth inhibitory activities against cancer colorectal cells (HT-29 cell line). The results showed that the nanopiperine-mAb^CD133 complex exhibited significant in vitro growth inhibition HT-29 colorectal cancer cells (46.56 ± 2.78%), while the viability of healthy cells remained unaffected (17.77 ± 0.82 %). The nanocomplex could also label 12.17% of HT-29 cells, which was rather higher than 3.83% from mAb^CD133 conjugated phycoerythrin (PE) as positive control. The fabricated nanopiperine-mAb^CD133 complex has proved the enhanced cytotoxic activities against colorectal cancerous cells as well as promising biopharmaceutical potency.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Dan Su ◽  
Yu-qiao Gao ◽  
Wei-bo Dai ◽  
Ying Hu ◽  
Yan-fen Wu ◽  
...  

Colorectal cancer (CRC) is one of the most common malignancies and most frequent cause of cancer death worldwide. The activation of both NF-κB and STAT3 signaling and the crosstalk between them play an important role in colorectal tumor.Helicteres angustifoliaL. is a type of commonly used Chinese medicinal herb and possesses a wide variety of biological activities. In the present study, we investigate the effects of three triterpenes fromH. angustifolia(HT) such as helicteric acid (HA), oleanic acid (OA), and betulinic acid (BA), on inhibiting CRC progression. Our results showed that HT extracts could decrease proliferation and induce apoptosis in HT-29 colorectal cancer cells. Moreover, HT extracts could suppress LPS-triggered phosphorylation of IKK, IκB, and NF-κB, attenuate IL-6-induced phosphorylation of JAK2 and STAT3, and suppress the expression of c-Myc, cyclin-D1, and BCL-xL, the downstream gene targets of NF-κB and STAT3. Therefore, HT extracts showed potent therapeutic and antitumor effects on CRC via inhibiting NF-κB and STAT3 signaling.


2020 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Magdalena Milczarek ◽  
Michał Chodyński ◽  
Anita Pietraszek ◽  
Martyna Stachowicz-Suhs ◽  
Kaori Yasuda ◽  
...  

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


2021 ◽  
Vol 11 (5) ◽  
pp. 1988
Author(s):  
Hilda Amelia Piñón-Castillo ◽  
Rigoberto Martínez-Chamarro ◽  
Reyna Reyes-Martínez ◽  
Yarely M. Salinas-Vera ◽  
Laura A. Manjarrez-Nevárez ◽  
...  

Nanotechnology is focused on the development and application of novel nanomaterials with particular physicochemical properties. Palladium nanoparticles (PdNPs) have been used as antimicrobials, antifungals, and photochemicals and for catalytic activity in dye reduction. In the present investigation, we developed and characterized PdNPs as a carrier of quercetin and initiated a study of its effects in colorectal cancer cells. PdNPs were first functionalized with polyvinylpyrrolidone (PVP) and then coupled to quercetin (PdNPs-PVP-Q). Our results showed that quercetin was efficiently incorporated to PdNPs-PVP, as demonstrated using UV/Vis and FT-IR spectroscopy. Using transmission electron microscopy, we demonstrated a reduction in size from 3–14.47 nm of PdNPs alone to 1.8–7.4 nm of PdNPs-PVP and to 2.12–3.14 of PdNPs-PVP-Q, indicating an increase in superficial area in functionalized PdNPs-Q. Moreover, hydrodynamic size studies using dynamic light scattering showed a reduction in size from 2120.33 nm ± 112.53 with PdNPs alone to 129.96 nm ± 6.23 for PdNPs-PVP-Q, suggesting a major reactivity when quercetin is coupled to nanoparticles. X-ray diffraction assays show that the addition of PVP or quercetin to PdNPs does not influence the crystallinity state. Catalytic activity assays of PdNPs-PVP-Q evidenced the chemical reduction of 4-nitrophenol, methyl orange, and methyl blue, thus confirming an electron acceptor capacity of nanoparticles. Finally, biological activity studies using MTT assays showed a significant inhibition (p < 0.05) of cell proliferation of HCT-15 colorectal cancer cells exposed to PdNPs-PVP-Q in comparison to untreated cells. Moreover, treatment with PdNPs-PVP-Q resulted in the apoptosis activation of HCT-15 cells. In conclusion, here we show for the first time the development of PdNPs-PVP-Q and evidence its biological activities through the inhibition of cell proliferation and apoptosis activation in colorectal cancer cells in vitro.


2018 ◽  
Vol 65 (3) ◽  
Author(s):  
Edyta Korbut ◽  
Agata Ptak-Belowska ◽  
Tomasz Brzozowski

Selenium compounds have been implicated as anticancer agents; however, the mechanism of their inhibitory action against cancer development has not been extensively investigated. The constitutive activation of the Wnt/β-catenin pathway is a central event in colorectal carcinogenesis. In this pathway, the excessive cell proliferation is initiated by the generation of β-catenin followed by overexpression of proto-oncogenes such as c-Myc. It is believed that under physiological conditions the level of c-Myc is efficiently controlled by accessibility of β-catenin protein through the process of phosphorylation by glycogen synthase kinase 3β (GSK-3β). Here, we determined whether selenomethionine (SeMet) can inhibit cell growth and affect the Wnt/β-catenin pathway in HT-29 human colorectal cancer cells in vitro. The effective cytotoxic doses of SeMet have been selected after 48 h of incubation of this compound with colorectal cancer HT-29 cell line. The MTT assay was used to assess cell viability and the protein and mRNA levels of β-catenin and c-Myc were determined by Western blotting and qPCR, respectively. The SeMet potently inhibited growth of HT-29 cells, significantly decreased the β-catenin protein and mRNA concentration, down-regulated the c-Myc gene expression and up-regulated pro-apoptotic Bax protein expression. Moreover, SeMet increased the level of GSK-3β phosphorylated at serine 9 (S9) and significantly increased the level of β-catenin phosphorylated at S33 and S37. We conclude that SeMet suppresses the growth of HT-29 colorectal cancer cells by the mechanism linked to the Wnt/β-catenin pathway, however, the degradation of β-catenin may occur independently of GSK-3β catalytic activity and its phosphorylation status.


2020 ◽  
Vol 75 ◽  
pp. 104290
Author(s):  
Yuxing Guo ◽  
Tao Zhang ◽  
Jinjin Gao ◽  
Xiaoxiao Jiang ◽  
Mingxuan Tao ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simona Mareike Lüttgenau ◽  
Christin Emming ◽  
Thomas Wagner ◽  
Julia Harms ◽  
Justine Guske ◽  
...  

AbstractLoss of apical-basal polarity and downregulation of cell-cell contacts is a critical step during the pathogenesis of cancer. Both processes are regulated by the scaffolding protein Pals1, however, it is unclear whether the expression of Pals1 is affected in cancer cells and whether Pals1 is implicated in the pathogenesis of the disease.Using mRNA expression data and immunostainings of cancer specimen, we show that Pals1 is frequently downregulated in colorectal cancer, correlating with poorer survival of patients. We further found that Pals1 prevents cancer cell metastasis by controlling Rac1-dependent cell migration through inhibition of Arf6, which is independent of the canonical binding partners of Pals1. Loss of Pals1 in colorectal cancer cells results in increased Arf6 and Rac1 activity, enhanced cell migration and invasion in vitro and increased metastasis of transplanted tumor cells in mice. Thus, our data reveal a new function of Pals1 as a key inhibitor of cell migration and metastasis of colorectal cancer cells. Notably, this new function is independent of the known role of Pals1 in tight junction formation and apical-basal polarity.


Sign in / Sign up

Export Citation Format

Share Document