scholarly journals Provable-Security Analysis of Authenticated Encryption Based on Lesamnta-LW in the Ideal Cipher Model

2021 ◽  
Vol E104.D (11) ◽  
pp. 1894-1901
Author(s):  
Shoichi HIROSE ◽  
Hidenori KUWAKADO ◽  
Hirotaka YOSHIDA
Author(s):  
Aisling Connolly ◽  
Pooya Farshim ◽  
Georg Fuchsbauer

We study the security of symmetric primitives against key-correlated attacks (KCA), whereby an adversary can arbitrarily correlate keys, messages, and ciphertexts. Security against KCA is required whenever a primitive should securely encrypt key-dependent data, even when it is used under related keys. KCA is a strengthening of the previously considered notions of related-key attack (RKA) and key-dependent message (KDM) security. This strengthening is strict, as we show that 2-round Even–Mansour fails to be KCA secure even though it is both RKA and KDM secure. We provide feasibility results in the ideal-cipher model for KCAs and show that 3-round Even–Mansour is KCA secure under key offsets in the random-permutation model. We also give a natural transformation that converts any authenticated encryption scheme to a KCA-secure one in the random-oracle model. Conceptually, our results allow for a unified treatment of RKA and KDM security in idealized models of computation.


2016 ◽  
Vol 30 (2) ◽  
pp. 495-518 ◽  
Author(s):  
Jooyoung Lee ◽  
Martijn Stam ◽  
John Steinberger

Author(s):  
Hwigyeom Kim ◽  
Yeongmin Lee ◽  
Jooyoung Lee

A forkcipher is a keyed, tweakable function mapping an n-bit input to a 2nbit output, which is equivalent to concatenating two outputs from two permutations. A forkcipher can be a useful primitive to design authenticated encryption schemes for short messages. A forkcipher is typically designed within the iterate-fork-iterate (IFI) paradigm, while the provable security of such a construction has not been widely explored.In this paper, we propose a method of constructing a forkcipher using public permutations as its building primitives. It can be seen as applying the IFI paradigm to the tweakable Even-Mansour ciphers. So our construction is dubbed the forked tweakable Even-Mansour (FTEM) cipher. Our main result is to prove that a (1, 1)-round FTEM cipher (applying a single-round TEM to a plaintext, followed by two independent copies of a single-round TEM) is secure up to 2 2n/3 queries in the ideal permutation model.


Author(s):  
Atul Luykx ◽  
Bart Mennink ◽  
Samuel Neves

BLAKE2 is a hash function introduced at ACNS 2013, which has been adopted in many constructions and applications. It is a successor to the SHA-3 finalist BLAKE, which received a significant amount of security analysis. Nevertheless, BLAKE2 introduces sufficient changes so that not all results from BLAKE carry over, meaning new analysis is necessary. To date, all known cryptanalysis done on BLAKE2 has focused on its underlying building blocks, with little focus placed on understanding BLAKE2’s generic security. We prove that BLAKE2’s compression function is indifferentiable from a random function in a weakly ideal cipher model, which was not the case for BLAKE. This implies that there are no generic attacks against any of the modes that BLAKE2 uses.


Author(s):  
Yuanxi Dai ◽  
Jooyoung Lee ◽  
Bart Mennink ◽  
John Steinberger

Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1485
Author(s):  
Yasir Nawaz ◽  
Lei Wang

Designing a secure construction has always been a fascinating area for the researchers in the field of symmetric key cryptography. This research aimed to make contributions to the design of secure block cipher in the ideal cipher model whose underlying primitive is a family of n − b i t to n − b i t random permutations indexed by secret key. Our target construction of a secure block ciphers denoted as E [ s ] is built on a simple XOR operation and two block cipher invocations, under the assumptions that the block cipher in use is a pseudorandom permutation. One out of these two block cipher invocations produce a subkey that is derived from the secret key. It has been accepted that at least two block cipher invocations with XOR operations are required to achieve beyond birthday bound security. In this paper, we investigated the E [ s ] instances with the advanced proof technique and efficient block cipher constructions that bypass the birthday-bound up to 2 n provable security was achieved. Our study provided new insights to the block cipher that is beyond birthday bound security.


Sign in / Sign up

Export Citation Format

Share Document