scholarly journals Genotype plus genotype by-environment interaction biplot and genetic diversity analyses on multi-environment trials data of yield and technological traits of cotton cultivars

2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Marco Antônio Peixoto ◽  
Renan Garcia Malikouski ◽  
Emanuel Ferrari do Nascimento ◽  
Andreia Schuster ◽  
Francisco José Correia Farias ◽  
...  

ABSTRACT: Understanding the genetic diversity and overcoming genotype-by-environment interaction issues is an essential step in breeding programs that aims to improve the performance of desirable traits. This study estimated genetic diversity and applied genotype + genotype-by-environment (GGE) biplot analyses in cotton genotypes. Twelve genotypes were evaluated for fiber yield, fiber length, fiber strength, and micronaire. Estimation of variance components and genetic parameters was made through restricted maximum likelihood and the prediction of genotypic values was made through best linear unbiased prediction. The modified Tocher and principal component analysis (PCA) methods, were used to quantify genetic diversity among genotypes. GGE biplot was performed to find the best genotypes regarding adaptability and stability. The Tocher technique and PCA allowed for the formation of clusters of similar genotypes based on a multivariate framework. The GGE biplot indicated that the genotypes IMACV 690 and IMA08 WS were highly adaptable and stable for the main traits in cotton. The cross between the genotype IMACV 690 and IMA08 WS is the most recommended to increase the performance of the main traits in cotton crops.

Author(s):  
Saleem Abid ◽  
Saleem Zahid

Twenty six yellow maize hybrids on the basis of stability analysis were evaluated in National Uniform Maize Hybrid Yield Trials conducted across eight diversified environments of Pakistan. Combined analysis of variance based AMMI analysis shown highly significant differences for environments, genotypes and their interactions. The environments explained about 78 percent of the total yield variation followed by genotype by environment interaction. Environment was the main aspect that influences the performance of maize yield in study area. The first two interaction principal component axes (IPCA1 and IPCA2) explained about 63 percent of the grain yield variation due to genotype and genotype by environment interaction (GGE). The GGE biplot analysis shown that entry-2 (Mex-YLHY2) was the most stable hybrid and can be considered as adaptable to all the environments.


Author(s):  
Om Prakash Yadav ◽  
A. K. Razdan ◽  
Bupesh Kumar ◽  
Praveen Singh ◽  
Anjani K. Singh

Genotype by environment interaction (GEI) of 18 barley varieties was assessed during two successive rabi crop seasons so as to identify high yielding and stable barley varieties. AMMI analysis showed that genotypes (G), environment (E) and GEI accounted for 1672.35, 78.25 and 20.51 of total variance, respectively. Partitioning of sum of squares due to GEI revealed significance of interaction principal component axis IPCA1 only On the basis of AMMI biplot analysis DWRB 137 (41.03qha–1), RD 2715 (32.54qha–1), BH 902 (37.53qha–1) and RD 2907 (33.29qha–1) exhibited grain yield superiority of 64.45, 30.42, 50.42 and 33.42 per cent, respectively over farmers’ recycled variety (24.43qha–1).


2021 ◽  
pp. 1-13
Author(s):  
Aliya Momotaz ◽  
Per H. McCord ◽  
R. Wayne Davidson ◽  
Duli Zhao ◽  
Miguel Baltazar ◽  
...  

Summary The experiment was carried out in three crop cycles as plant cane, first ratoon, and second ratoon at five locations on Florida muck soils (histosols) to evaluate the genotypes, test locations, and identify the superior and stable sugarcane genotypes. There were 13 sugarcane genotypes along with three commercial cultivars as checks included in this study. Five locations were considered as environments to analyze genotype-by-environment interaction (GEI) in 13 genotypes in three crop cycles. The sugarcane genotypes were planted in a randomized complete block design with six replications at each location. Performance was measured by the traits of sucrose yield tons per hectare (SY) and commercial recoverable sugar (CRS) in kilograms of sugar per ton of cane. The data were subjected to genotype main effects and genotype × environment interaction (GGE) analyses. The results showed significant effects for genotype (G), locations (E), and G × E (genotype × environment interaction) with respect to both traits. The GGE biplot analysis showed that the sugarcane genotype CP 12-1417 was high yielding and stable in terms of sucrose yield. The most discriminating and non-representative locations were Knight Farm (KN) for both SY and CRS. For sucrose yield only, the most discriminating and non-representative locations were Knight Farm (KN), Duda and Sons, Inc. USSC, Area 5 (A5), and Okeelanta (OK).


2018 ◽  
Vol 31 (1) ◽  
pp. 64-71 ◽  
Author(s):  
MASSAINE BANDEIRA E SOUSA ◽  
KAESEL JACKSON DAMASCENO-SILVA ◽  
MAURISRAEL DE MOURA ROCHA ◽  
JOSÉ ÂNGELO NOGUEIRA DE MENEZES JÚNIOR ◽  
LAÍZE RAPHAELLE LEMOS LIMA

ABSTRACT The GGE Biplot method is efficien to identify favorable genotypes and ideal environments for evaluation. Therefore, the objective of this work was to evaluate the genotype by environment interaction (G×E) and select elite lines of cowpea from genotypes, which are part of the cultivation and use value tests of the Embrapa Meio-Norte Breeding Program, for regions of the Brazilian Cerrado, by the GGE-Biplot method. The grain yield of 40 cowpea genotypes, 30 lines and 10 cultivars, was evaluated during three years (2010, 2011 and 2012) in three locations: Balsas (BAL), São Raimundo das Mangabeiras (SRM) and Primavera do Leste (PRL). The data were subjected to analysis of variance, and adjusted means were obtained to perform the GGE-Biplot analysis. The graphic results showed variation in the performance of the genotypes in the locations evaluated over the years. The performance of the lines MNC02-675F-4-9 and MNC02-675F-4-10 were considered ideal, with maximum yield and good stability in the locations evaluated. There mega-environments were formed, encompassing environments correlated positively. The lines MNC02-675F-4-9, MNC02-675F-9-3 and MNC02-701F-2 had the best performance within each mega-environment. The environment PRL10 and lines near this environment, such as MNC02-677F-2, MNC02-677F-5 and the control cultivar (BRS-Marataoã) could be classified as those of greater reliability, determined basically by the genotypic effects, with reduced G×E. Most of the environments evaluated were ideal for evaluation of G×E, since the genotypes were well discriminated on them. Therefore, the selection of genotypes with adaptability and superior performance for specific environments through the GGE-Biplot analysis was possible.


Author(s):  
Agung Wahyu Soesilo ◽  
Indah Anita Sari ◽  
Bayu Setyawan

Phenomenon of genotype by environment interaction was able to influence the stability performance of cocoa resistance to Phytophthora pod rot (PPR). This research had an objective to evaluate the effect of genotype by environment interaction on resistance of cocoa hybrids to PPR. The tested hybrids were F1 crosses between selected clones of TSH 858, Sulawesi 1, Sulawesi 2, NIC 7, ICS 13, KEE 2 and KW 165. There were 14 tested hybrids and an open pollinated hybrid of ICS 60 x Sca 12 was used as control in multilocation trials at four different agroclimatic locations, namely Jatirono Estate ((highland-wet climate), Kalitelepak Estate (lowland-wet climate), Kaliwining Experimental Station (low land-dry climate) and Sumber Asin Experimental Station (highland-dry climate). Trials were established in the randomized complete block design with four replications. Resistance to PPR were evaluated based on the percentage of infected pod for the years during wet climate of 2010 in Jatirono, Kalitelepak and Kaliwining followed in dry climate of 2011–2015 in Kaliwining and Sumber Asin. Variance of data were analyzed for detecting the effect of genotype by environment interaction (GxE) then visualized with a graph of genotype main effect and genotype by environment interaction (a graph of GGE) biplot. There was consistently no interaction effect between hybrid and location to PPR incidence which was affected by single factor of hybrid, year, location and interaction between year and location. The effect of year indicated yearly change of weather was more important to PPR incidence than location difference. A graph of GGE biplot indicated a stable performance of the tested hybrids among locations.


2020 ◽  
Vol 11 (3) ◽  
pp. 425-430
Author(s):  
V. M. Hudzenko ◽  
O. A. Demydov ◽  
V. P. Kavunets ◽  
L. M. Kachan ◽  
V. A. Ishchenko ◽  
...  

Increasing crop adaptability in terms of ensuring a stable level of productivity in the genotype – environment interaction is still the central problem of plant breeding theory and practice. The aim of the present study is to theoretically substantiate and practically test a scheme of multi-environment trials, as well as interpret experimental data using modern statistical tools for evaluation of the genotype by environment interaction, and highlight the best genotypes with combining yield performance and ecological stability at the final stage of the spring barley breeding process. For this purpose in the first year of competitive testing (2016) at the V. M. Remeslo Myronivka Institute of Wheat of the National Academy of Agrarian Sciences of Ukraine we selected nine promising spring barley breeding lines. In 2017 and 2018 these breeding lines were additionally tested in two other scientific institutions located in different agroclimatic zones of Ukraine. For a more reliable assessment, the breeding lines were compared not only with standard cultivar, but also with ten spring barley cultivars widespread in agricultural production of Ukraine. Thus, for three years of competitive testing, we received experimental genotype-environmental data from seven environments, which represent a combination of contrasting agroclimatic zones (Central part of the Forest-Steppe, Polissia and Northern Steppe of Ukraine) and different years (2016–2018). Our results revealed significant variability of mean yield of genotypes, as well as cross-over genotype by environment interaction. The first two principal components of both AMMI and GGE biplot explained more than 80% of the genotype by environment interaction. In general, the peculiarities we revealed indicate the effectiveness of the proposed combination of spatial (agroclimatic zones) and temporal (years) gradients to identify the best spring barley genotypes with the optimal combination of yield performance and ecological stability. Using AMMI and GGE biplot models was effective for the comprehensive differentiation of genotypes in terms of wide and specific adaptability, as well as for qualitative characterization of test environments and providing mega-environment analysis. As a practical result of the multi-environment trial, four spring barley breeding lines have been submitted to the State Variety Testing of Ukraine as new cultivars MIP Sharm, MIP Tytul, MIP Deviz and MIP Zakhysnyk, respectively.


Sign in / Sign up

Export Citation Format

Share Document