scholarly journals EFFECT OF SOMATOTROPIN AND THYROXINE ON THE IN VITRO DEVELOPMENT OF BOVINE PREANTRAL FOLLICLES

2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Talita Fernandes da Silva ◽  
Sanely Lourenço da Costa ◽  
Eduardo Paulino da Costa ◽  
José Domingos Guimarães

Abstract The aim of the study was to evaluate the effect of recombinant bovine somatotropin (rbST) and thyroxine (T4) on survival and growth of bovine preantral ovarian follicles (PAOF) cultured in vitro. Ovarian fragments were collected in local abattoirs and immediately fixed for classical histology and transmission electron microscopy (non-cultured control). The other fragments were then cultured in situ for seven days in minimum essential medium alone (MEM+ - cultured control) or in the presence of 1,000 ng/mL rbST and 20 ng/mL T4, isolated or associated. After seven days, there was a reduction (P<0.05) in the percentage of normal follicles in MEM+ alone or with T4. In oocyte diameter, there was a reduction in MEM+ alone. There was no influence (P>0.01) of the medium used on the follicular diameter of the PAOF cultured for seven days. Ultrastructural analysis showed cell damage. In conclusion, the presence of rbST maintains the rate of morphologically normal follicles during the culture for seven days (observed by optical microscopy), but it does not exert beneficial effects on its ultrastructural integrity and oocyte and follicular growth.

2019 ◽  
Vol 71 (5) ◽  
pp. 1445-1452 ◽  
Author(s):  
T.F. Silva ◽  
S.L. Costa ◽  
E.P. Costa ◽  
J.D. Guimarães ◽  
V.L.D. Queiroz-Castro

ABSTRACT The aim of this study was to evaluate the effect of Recombinant bovine somatotropin (rbST) on survival and diameter of bovine preantral ovarian follicles (PAOF) cultured in vitro. Ovaries were collected from adult cows and fragments of ovarian cortex were immediately fixed (non-cultured control) or cultured in vitro in α-MEM+ alone or containing 10, 50, 100 or 1,000ng/mL rbST. The fragments were processed for Classical Histology and Transmission Electron Microscopy. After one and seven days of culture, the percentage of normal follicles in the non-cultured control was superior (P< 0.05) to the follicles cultured in α-MEM+ alone or with different rbST concentrations. The oocyte and follicular mean diameter did not increase during the culture for one and seven days, both in media containing rbST and in the medium without this hormone. The only medium in which there was no reduction in follicular diameter with the time of culture was the medium without rbST. Ultrastructural damage in PAOF cultured in vitro was found. It is concluded that the use of rbST at different concentrations in in situ culture of bovine preantral follicles has no beneficial effects on survival and growth of bovine PAOF.


2010 ◽  
Vol 30 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Valdevane R. Araújo ◽  
Cleidson M. Gomes da Silva ◽  
Deborah M. Magalhães ◽  
Gerlane Modesto da Silva ◽  
Sônia N. Báo ◽  
...  

This study was conducted in order to verify the effect of different concentrations of BMP-7 in the in vitro survival and development of caprine preantral follicles. Fragments of caprine ovarian cortical tissue were cultured for 1 or 7 days in Minimum Essential Medium (MEM+) supplemented with different concentrations of BMP-7 (1, 10, 50 or 100ng/ml). Non-cultured fragments or those cultured for 1 or 7 days were processed for classical histology and transmission electron microscopy (TEM). Parameters such as follicular survival, activation and growth were evaluated. The results showed that, after 1 or 7 days of culture, the percentage of morphologically normal follicles was significantly reduced in all treatments when compared with fresh control, except at 1ng/ml of BMP-7 for 1 day. In addition, the concentration of 10ng/ml of BMP-7 significantly increases follicular diameter from day 1 to 7 of culture. There was no influence of the other concentrations of BMP-7 regarding to the follicular and oocyte diameter. Ultrastructure studies confirmed follicular integrity after 7 days of culture in 1ng/ml BMP-7. In conclusion, small concentrations of BMP-7 can improve the survival and growth of caprine preantral follicles during in vitro culture.


2014 ◽  
Vol 66 (4) ◽  
pp. 977-985 ◽  
Author(s):  
J.E. Nóbrega Jr. ◽  
R. Rossetto ◽  
M.H.T. Matos ◽  
R.N. Chaves ◽  
D.M. Magalhães ◽  
...  

This study describes the effect of sphingosine 1-phosphate (S1P) for development of preantral follicle, therefore the activation and follicular viability of caprine follicles cultured in vitro. Ovarian fragments were cultured for 1 or 7 days in Minimum Essential Medium with different S1P concentrations (0, 1, 10, 50, 100 or 200ng/mL). All ovarian fragments were processed for histological analysis in optical microscopy, transmission electron microscopy and fluorescence analysis. The treatment using 1ng/mL of S1P was able to maintain the percentage of normal follicles with the progression of the culture from day 1 to 7. At end of the 7-day culture period there was a significant reduction (P<0.05) in the percentage of primordial follicles in all groups treated with S1P, compared with fresh control (FC) and Control Culture (CC), which was followed by an increase of activated follicles (intermediary, primary and secondary). In addition, the culture for 7 days with media supplemented with S1P with 1ng/mL preserved the ultrastructure of organelles and kept the preantral follicular viability when evaluated by fluorescence microscopy. In conclusion, after 7 days of culture, the 1ng/mL of S1P activates the development of preantral caprine follicles, cultured in situ and maintains the oocitary and follicular viability.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3010 ◽  
Author(s):  
Anna Kicinska ◽  
Rafał P. Kampa ◽  
Jan Daniluk ◽  
Aleksandra Sek ◽  
Wieslawa Jarmuszkiewicz ◽  
...  

Naringenin, a flavanone obtained from citrus fruits and present in many traditional Chinese herbal medicines, has been shown to have various beneficial effects on cells both in vitro and in vivo. Although the antioxidant activity of naringenin has long been believed to be crucial for its effects on cells, mitochondrial pathways (including mitochondrial ion channels) are emerging as potential targets for the specific pharmacological action of naringenin in cardioprotective strategies. In the present study, we describe interactions between the mitochondrial large-conductance calcium-regulated potassium channel (mitoBKCa channel) and naringenin. Using the patch-clamp method, we showed that 10 µM naringenin activated the mitoBKCa channel present in endothelial cells. In the presence of 30 µM Ca2+, the increase in the mitoBKCa channel probability of opening from approximately 0.25 to 0.50 at −40 mV was observed. In addition, regulation of the mitoBKCa channel by naringenin was dependent on the concentration of calcium ions. To confirm our data, physiological studies on the mitochondria were performed. An increase in oxygen consumption and a decrease in membrane potential was observed after naringenin treatment. In addition, contributions of the mitoBKCa channel to apoptosis and necrosis were investigated. Naringenin protected cells against damage induced by tumor necrosis factor α (TNF-α) in combination with cycloheximide. In this study, we demonstrated that the flavonoid naringenin can activate the mitoBKCa channel present in the inner mitochondrial membrane of endothelial cells. Our studies describing the regulation of the mitoBKCa channel by this natural, plant-derived substance may help to elucidate flavonoid-induced cytoprotective mechanisms.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Cíntia Mirela Guimarães Nobre ◽  
Norbert Pütz ◽  
Matthias Hannig

Hydroxyapatite nanoparticles (nano-HAP) are receiving considerable attention for dental applications, and their adhesion to enamel is well established. However, there are no reports concerning the effects of HAP on other dental materials, and most of the studies in this field are based on in vitro designs, neglecting the salivary pellicle-apatite interactions. Thus, this in situ pilot study aims to evaluate the effects of three hydroxyapatite-based solutions and their interactions with different dental material surfaces under oral conditions. Hence, two volunteers carried intraoral splints with mounted samples from enamel and from three dental materials: titanium, ceramics, and polymethyl-methacrylate (PMMA). Three HAP watery solutions (5%) were prepared with different shapes and sizes of nano-HAP (HAP I, HAP II, HAP III). After 3 min of pellicle formation, 10 ml rinse was performed during 30 sec. Rinsing with water served as control. Samples were accessed immediately after rinsing, 30 min and 2 h after rinsing. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the particles, and SEM evaluated the pellicle-HAP interactions. SEM and TEM results showed a high variation in the size range of the particles applied. A heterogeneous HAP layer was present after 2 h on enamel, titanium, ceramics, and PMMA surfaces under oral conditions. Bridge-like structures were visible between the nano-HAP and the pellicle formed on enamel, titanium, and PMMA surfaces. In conclusion, nano-HAP can adhere not only to enamel but also to artificial dental surfaces under oral conditions. The experiment showed that the acquired pellicle act as a bridge between the nano-HAP and the materials’ surface.


1984 ◽  
Vol 98 (2) ◽  
pp. 619-628 ◽  
Author(s):  
G L Gerton ◽  
C F Millette

During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by Nomarski or phase-contrast microscopy, no cells had flagella immediately after isolation; flagella were first clearly detected after 6 1/2 h of culture in Eagle's minimal essential medium containing 10% fetal bovine serum and 6 mM lactate. After 24 h, approximately 20% of round spermatids had formed flagella. Multinucleated round spermatids often formed multiple flagella, the number never exceeding the number of nuclei per symplast. Round spermatids were the only spermatogenic cells capable of tail formation. Flagella elongation was blocked by 1 microM demecolcine, an inhibitor of tubulin polymerization. Indirect immunofluorescence localized tubulin in the flagella. As seen by scanning electron microscopy, flagella developed as early as 2 h after culture and continued to elongate over the next 20 h, reaching lengths of at least 19 micron. Transmission electron microscopy demonstrated that flagella formed in culture resembled flagella from Golgi-phase round spermatids in situ; the flagella consisted of "9+2" axonemes lacking other accessory structures such as outer dense fibers and the fibrous sheath. As determined by acridine orange staining of the developing acrosomes, all spermatids that formed flagella in culture were Golgi-phase spermatids. By these criteria, the structures are indeed true flagella, corresponding in appearance to what others have described for early mammalian spermatid flagella in situ. We believe this is the first substantiated report of limited in vitro differentiation by isolated mammalian spermatids.


2000 ◽  
Vol 44 (11) ◽  
pp. 3012-3016 ◽  
Author(s):  
Elisa Bigliardi ◽  
Anna Maria Bernuzzi ◽  
Silvia Corona ◽  
Simonetta Gatti ◽  
Massimo Scaglia ◽  
...  

ABSTRACT Since 1985 microsporidia have been recognized as a cause of emerging infections in humans, mainly in immunocompromised human immunodeficiency virus-positive subjects. As chitin is a basic component of the microsporidian infective stage, the spore, we evaluated in vitro the susceptibility of a human-derived strain ofEncephalitozoon hellem to nikkomycin Z, a peptide-nucleoside antibiotic known as a competitive inhibitor of chitin synthase enzymes. Transmission electron microscopy showed that this drug, at 25 μg/ml, reduced the number of parasitic foci by about 35% ± standard deviation after 7 days of culture (P< 0.0001) and induced cell damage of both mature and immature spores and also other sporogonic and merogonic stages. In particular, an irregular outline of the cell shape and an abnormally condensed cytoplasm in meronts and sporonts were documented. Also, the polar tubule and the polaroplast membranes appeared disarrayed in the sporoblast stage. The spore wall showed an enlarged endospore and delaminated exospore. Mature spores had a complete cytoplasmic disorganization and a swollen and delaminated cell wall. No ultrastructural cell damage was observed in uninfected control cultures treated with the drug.


2020 ◽  
pp. 089270572091278 ◽  
Author(s):  
Reem Al-Wafi ◽  
SF Mansour ◽  
MK Ahmed

Electrospun nanofibrous scaffolds containing co-dopant of Sr/Se into carbonated hydroxyapatite has been synthesized in situ with graphene (G) nanosheets and carried on polycaprolactone at different contributions of G. The powder and the nanofibrous samples were investigated using X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy (FESEM). The FESEM micrographs show that the highest content of G (0.2 G) was formed in non-oriented/rough/cracked fibers with diameters around 0.3–0.4 µm at the maximum. The tensile strength of nanofibrous scaffolds was improved with the addition of G nanosheets and the maximum tensile strength of 0.2 G was around 6.39 ± 0.24 MPa, while the minimum cell viability ratio was about 94.4 ± 3.2% for the free G nanofibers. The in vitro attachment of HFB4 cell lines was investigated and it showed that nanofibrous scaffolds have induced cells to be proliferated and spread on the nanofibrous scaffolds’ surface. This behavior of cells growth encourages more investigations for these nanofibrous scaffolds to be promoted for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document