scholarly journals Performance of UASB reactors in two stages followed by post-treatment with activated sludge in wastewater batch of wet-processed coffee

2013 ◽  
Vol 33 (4) ◽  
pp. 808-819 ◽  
Author(s):  
Marcelo Bruno ◽  
Roberto A. de Oliveira

In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.

2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
E. P. Jordäo ◽  
I. Volschan ◽  
P. Alem Sobrinho

Anaerobic treatment, such as the Upflow Anaerobic Sludge Blanket - UASB - has many advantages: a compact system, with practically no equipment in the anaerobic vessel, low operational costs, very low energy consumption, and low excess sludge produced. However, taking into account its poor effluent quality, and the legal water quality standards, post treatment is a must. Brazil is experiencing the scheme UASB plus aerobic secondary treatment, aiming reduction in investment and mainly in operational costs, with excellent results. Three cases are discussed in this paper: two small plants, Barreto (0,14 m3/s) and Itaipu (0.07 m3/s, 1.6 MGD); and the Rio Preto plant (1.34 m3/s), the first two already operational. All adopt the UASB plus activated sludge process, the last two with denitrification. Several other important plants are in the stage of design or construction in Brazil, with flows as high as 3.35 m3/s, UASB plus activated sludge with nitrogen and phosphorus removal and UASB plus trickling filters. Design criteria for the anaerobic reactor and for the different secondary treatment processes, and available operational data as well, are discussed in the paper. Particular attention is given to special restraints with activated sludge as post treatment, such as the higher sludge age required for nitrification, and the difficulty in denitrifying the anaerobic effluent.


2014 ◽  
Vol 34 (6) ◽  
pp. 1256-1269 ◽  
Author(s):  
Roseane Del'Arco Ramires ◽  
Roberto Alves de Oliveira

The performance of two upflow anaerobic sludge blanket (UASB) reactors was evaluated in pilot scale (908 and 188 L), installed in series (R1 and R2), fed with swine wastewater with TSS around 5 and 13 g L-1. The UASB reactors were submitted to HDT of 36 and 18 h with VOL of 5.5 to 34.4 g COD (L d)-1 in the R1 and HDT of 7.5 e 3.7 h with VOL from 5.1 to 45.2 g COD (L d)-1 in the R2. The average removal efficiencies of COD ranged from 55 to 85% in the R1 and from 43 to 57% in the R2, resulting in values from 82 to 93% in the UASB reactors in two stage. Methane concentrations in the biogas were 69 to 74% with specific production from 0.05 to 0.27 L CH4 (g removedCOD)-1 in the R1 and of 0.10 to 0.12 L CH4 (g removedCOD)-1 in the R2. The average removal efficiencies were 61 to 75% for totalP, 39 to 69% for KN, 82 to 93% for orgN and 20 to 94% for Fe, Zn, Cu and Mn. The amN concentration were not reduced indicating the need to post-treatment for effluent disposal into water bodies. There were reductions of total coliforms from 99.8123 to 99.9989% and of thermotolerant coliforms from 99.9725 to 99.9999%. The conditions imposed to the UASB reactors in two stage provided high conversions of removedCOD into methane (up to 77%) and reductions of organic an inorganic pollution loads from swine wastewater.


2001 ◽  
Vol 44 (4) ◽  
pp. 79-82 ◽  
Author(s):  
L. F. Lopes ◽  
P. R. Koetz ◽  
M. S. Santos

Parboiled rice industry is one of main food industries in the south of Brazil. The main parts of the processing are the humidification and gelatinization of the grain. This procedure increases the productivity and nutritive and cooking values of the product. Some of these industries in the region utilize upflow anaerobic sludge blanket (UASB) reactors as a biological treatment for carbon removal. For nitrogen removal, the proposed system aims to eliminate an extra denitrification reactor, making this step in the top of the UASB, an anoxic zone of the reactor. Nitrification was performed in aerated mixed reactor of 3,6 L. A fraction of the NR was recycled in the top of UASB reactor above the sludge blanket. Recycled ratio varied from 0; 1:0.5; 1:1.0; to 1:1.5. The maximum removal efficiency of NTK was 80%. The results confirm the viability of the proposed system for denitrification.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


2013 ◽  
Vol 3 (2) ◽  
pp. 210-218
Author(s):  
R. Rodríguez-Pimentel ◽  
F. Ramírez-Vives ◽  
A. De Jesús-Rojas ◽  
F. J. Martínez-Valdez ◽  
S. Rodríguez-Pérez ◽  
...  

Two stages anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW) is proposed using a batch anaerobic trickling bed (BATB) reactor in the first hydrolysis and acidogenesis stage. At total solids loading of 135 g/L and reaction times around 30 days, total solids (ηTS) and chemical oxygen demand (ηCOD) removal efficiencies above 46% were obtained independently of pH (between 4.1 and 6.4). Dependent on pH were methane production, four times more at pH 6.4 than at 4.8 and four times more volatile fatty acids (VFA) production at 6.4 than at 4.1 and twice than at 4.8. Leachates generated in the BATB reactor were diluted with municipal wastewater and fed to an upflow anaerobic sludge blanket (UASB) reactor at volumetric organic loading rates from 11 to 28 g/L.d where 90% COD removal efficiencies (ηCOD) and 11.4 g CODCH4./L.d were obtained. Two stages anaerobic digestion results in high rates of solids removal and methane production (0.63 kWhr/kg TS fed).


2013 ◽  
Vol 33 (2) ◽  
pp. 367-378 ◽  
Author(s):  
Estevão Urbinati ◽  
Rose M. Duda ◽  
Roberto A. de Oliveira

In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.


2014 ◽  
Vol 34 (1) ◽  
pp. 124-142 ◽  
Author(s):  
Estevão Urbinati ◽  
Roberto Alves de Oliveira

In this work it was evaluated the performance of two systems of swine wastewater treatment consisting of two-stage upflow anaerobic sludge blanket (UASB) reactors, with and without post-treatment in sequencing batch reactor (SBR), fed continuously, with aerobic phase. The UASB reactors in the first stage had 908 L in the sets I and II, and in the second stage 350 and 188 L, respectively. In the set II the post-treatment was performed in a SBR of 3,000 L. The hydraulic detention times in the anaerobic treatment systems were 100, 75 and 58 h in the set I; 87, 65 and 51 h in the set II; and 240 and 180 h in the SBR. The volumetric organic load applied in the first stage UASB reactors ranged from 6.9 to 12.6 g total COD (L d)-1 in the set I and 7.5 to 9.8 g total COD (L d)-1 in the set II. The average removal efficiencies of total COD, total phosphorus (Ptotal), and Kjeldahl and organic nitrogen (KN and Norg) in the anaerobic treatment systems were similar and reached maximum values of 97%, 64%, 68%, and 98%. In the SBR, the removal efficiencies of total COD and thermotolerant coliforms were up to 62 and 92% resulting, respectively, in effluent concentrations of 135 mg L-1 and 2x10(4)MPN (100 mL)-1. For Ptotal, total nitrogen (TN) and Norg, the average removal efficiencies in the SBR were up to 58, 25 and 73%, respectively.


2011 ◽  
Vol 64 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Tarek Elmitwalli ◽  
Ralf Otterpohl

The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14–25 °C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 °C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from ‘Flintenbreite’ settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 °C, total chemical oxygen demand (CODt) removal of 52–64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31–41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22–36 and 10–24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31–64%) than the septic tank (11–14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20–30 °C, while a HRT of 12–24 h can be applied at temperature lower than 20 °C.


Sign in / Sign up

Export Citation Format

Share Document