scholarly journals Efficiency evaluation of a small number of DMUs: an approach based on Li and Reeves's model

2009 ◽  
Vol 29 (1) ◽  
pp. 97-110 ◽  
Author(s):  
João Carlos Correia Baptista Soares de Mello ◽  
João Carlos Namorado Clímaco ◽  
Lidia Angulo Meza

This paper deals with the evaluation of Decision Making Units (DMU) when their number is not large enough to allow the use of classic Data Envelopment Analysis (DEA) models. To do so, we take advantage of the TRIMAP software when used to study the Li and Reeves MultiCriteria DEA (MCDEA) model. We introduce an evaluation measure obtained with the integration of one of the objective functions along the weight space. This measure allows the DMUs joint evaluation. This approach is exemplified with numerical data from some Brazilian electrical companies.

Author(s):  
somayeh khezri ◽  
Akram Dehnokhalaji ◽  
Farhad Hosseinzadeh Lotfi

One of interesting subjects in Data Envelopment Analysis (DEA) is estimation of congestion of Decision Making Units (DMUs). Congestion is evidenced when decreases (increases) in some inputs re- sult in increases (decreases) in some outputs without worsening (im- proving) any other input/output. Most of the existing methods for measuring the congestion of DMUs utilize the traditional de nition of congestion and assume that inputs and outputs change with the same proportion. Therefore, the important question that arises is whether congestion will occur or not if the decision maker (DM) increases or de- creases the inputs dis-proportionally. This means that, the traditional de nition of congestion in DEA may be unable to measure the con- gestion of units with multiple inputs and outputs. This paper focuses on the directional congestion and proposes methods for recognizing the directional congestion using DEA models. To do this, we consider two di erent scenarios: (i) just the input direction is available. (ii) none of the input and output directions are available. For each scenario, we propose a method consists in systems of inequalities or linear pro- gramming problems for estimation of the directional congestion. The validity of the proposed methods are demonstrated utilizing two nu- merical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Nafiseh Javaherian ◽  
Ali Hamzehee ◽  
Hossein Sayyadi Tooranloo

Data envelopment analysis (DEA) is a powerful tool for evaluating the efficiency of decision-making units for ranking and comparison purposes and to differentiate efficient and inefficient units. Classic DEA models are ill-suited for the problems where decision-making units consist of multiple stages with intermediate products and those where inputs and outputs are imprecise or nondeterministic, which is not uncommon in the real world. This paper presents a new DEA model for evaluating the efficiency of decision-making units with two-stage structures and triangular intuitionistic fuzzy data. The paper first introduces two-stage DEA models, then explains how these models can be modified with intuitionistic fuzzy coefficients, and finally describes how arithmetic operators for intuitionistic fuzzy numbers can be used for a conversion into crisp two-stage structures. In the end, the proposed method is used to solve an illustrative numerical example.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Qiang Hou ◽  
Xue Zhou

Cross-efficiency evaluation method is an effective and widespread adopted data envelopment analysis (DEA) method with self-assessment and peer-assessment to evaluate and rank decision making units (DMUs). Extant aggressive, benevolent, and neutral cross-efficiency methods are used to evaluate DMUs with competitive, cooperative, and nontendentious relationships, respectively. In this paper, a symmetric (nonsymmetric) compete-cooperate matrix is introduced into aggressive and benevolent cross-efficiency methods and compete-cooperate cross-efficiency method is proposed to evaluate DMUs with diverse (relative) relationships. Deviation maximization method is applied to determine the final weights of cross-evaluation to enhance the differentiation ability of cross-efficiency evaluation method. Numerical demonstration is provided to illustrate the reasonability and practicability of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Anrong Yang ◽  
Zigang Zhang ◽  
Yishi Zhang ◽  
Dunliang Chen

Cross-efficiency evaluation is an effective and widely used method for ranking decision making units (DMUs) in data envelopment analysis (DEA). Gap minimization criterion is introduced in aggressive and benevolent cross-efficiency methods to avoid possible extreme efficiency from peer-evaluation and to get equitable results. On the basis of this criterion, a weighted cross-efficiency method with similarity distance that, respectively, considers the aggressive and the benevolent formulations is proposed to determine cross-efficiency. The weights of the cross-evaluation determined by this method are positively influenced by self-evaluation and thus are propitious to resolving conflict. Numerical demonstration reveals the feasibility of the proposed method.


2018 ◽  
Vol 28 (4) ◽  
pp. 521-538
Author(s):  
Seyed Nasseri ◽  
Hamid Kiaei

Cross-efficiency evaluation, an extension of the data envelopment analysis (DEA), has found an appropriate function in ranking decision making units (DMU). However, DEA suffers from a potential aw, that is, the existence of multiple optimal solutions. Different methods have been proposed to obtain a unique solution (based on a specific criterion). In this paper, we refer to Wang's method for ranking DMUs but argue that his way of selecting the weights is not the appropriate one. Namely, in the cross-efficiency evaluation of DMUs, we always search for the weights which use minimum resources to increase the production. Therefore, we suggest that the selection of weights among the multiple weights should be determined by decreasing the contribution of inputs in the use of resources, and increasing the contribution of outputs in the production, which should overtly prevent the selection of zero solutions to the extent possible. To this end, some examples are given to illustrate differences and advantages of our method compared to those usually used.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1205
Author(s):  
Chun-Hsiung Su ◽  
Tim Lu

Cross-efficiency evaluation is an effective methodology for discriminating among a set of decision-making units (DMUs) through both self- and peer-evaluation methods. This evaluation technique is usually used for data envelopment analysis (DEA) models with constant returns to scale due to the fact that negative efficiencies never happen in this case. For cases of variable returns to scale (VRSs), the evaluation may generate negative cross-efficiencies. However, when the production technology is known to be VRS, a VRS model must be used. In this case, negative efficiencies may occur. Negative efficiencies are unreasonable and cause difficulties in calculating the final cross-efficiency. In this paper, we propose a cross-efficiency evaluation method, with the technology of VRS. The cross-efficiency intervals of DMUs were derived from the associated aggressive and benevolent formulations. More importantly, the proposed approach does not produce negative efficiencies. For comparison of DMUs with their cross-efficiency intervals, a numerical index is required. Since the concept of entropy is an effective tool to measure the uncertainty, this concept was employed to build an index for ranking DMUs with cross efficiency intervals. A real-case example was used to illustrate the approach proposed in this paper.


2018 ◽  
Vol 52 (4-5) ◽  
pp. 1429-1444 ◽  
Author(s):  
Sohrab Kordrostami ◽  
Alireza Amirteimoori ◽  
Monireh Jahani Sayyad Noveiri

In conventional data envelopment analysis (DEA) models, the efficiency of decision making units (DMUs) is evaluated while data are precise and continuous. Nevertheless, there are occasions in the real world that the performance of DMUs must be calculated in the presence of vague and integer-valued measures. Therefore, the current paper proposes fuzzy integer-valued data envelopment analysis (FIDEA) models to determine the efficiency of DMUs when fuzzy and integer-valued inputs and/or outputs might exist. To illustrate, fuzzy number ranking and graded mean integration representation methods are used to solve some integer-valued data envelopment analysis models in the presence of fuzzy inputs and outputs. Two examples are utilized to illustrate and clarify the proposed approaches. In the provided examples, two cases are discussed. In the first case, all data are as fuzzy and integer-valued measures while in the second case a subset of data is fuzzy and integer-valued. The results of the proposed models indicate that the efficiency scores are calculated correctly and the projections of fuzzy and integer factors are determined as integer values, while this issue has not been discussed in fuzzy DEA, and projections may be estimated as real-valued data.


2016 ◽  
Vol 57 ◽  
Author(s):  
Eligijus Laurinavičius ◽  
Daiva Rimkuvienė ◽  
Aurelija Sakalauskaitė

The efficiency is a measure of a performance of a decision making units (DMUs can be a firm, a person, an organization). The data envelopment analysis (DEA) is a datadriven non-parametric approach for measuring the efficiency of a set of DMUs. The DEA is a linear programming (LP) based technique which deals with the basic models (CCR, BCC, SBM, additive) of the efficiency evaluation. This paper presents basic solution ellipsoid method approach associated with some problems of initial basic solution and the steps of it.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 9-15 ◽  
Author(s):  
Lidia Angulo Meza ◽  
João Carlos Soares de Mello ◽  
Silvio Gomes Junior

Data Envelopment Analysis is a non-parametrical approach for efficiency evaluation of so-called DMUs (Decision Making Units) and takes into account multiple inputs and outputs. For each inefficient DMU, a target is provided which is constituted by the inputs or outputs levels that are to be attained for the inefficient DMU to become efficient. However, multiobjective models, known as MORO (Multiobjective Model for Ratio Optimization) provide a set of targets for inefficient DMU, which provides alternatives among which the decision-maker can choose. In this paper, we proposed an extension of the MORO models to take into account non-discretionary variables, i.e., variables that cannot be controlled. We present a numerical example to illustrate the proposed multiobjective model. We also discuss the characteristics of this model, as well as the advantages of offering a set of targets for the inefficient DMUs when there are non-discretionary variables in the data set.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Farhad Hosseinzadeh-Lotfi ◽  
Gholam-Reza Jahanshahloo ◽  
Mansour Mohammadpour

It is well known that data envelopment analysis (DEA) models are sensitive to selection of input and output variables. As the number of variables increases, the ability to discriminate between the decision making units (DMUs) decreases. Thus, to preserve the discriminatory power of a DEA model, the number of inputs and outputs should be kept at a reasonable level. There are many cases in which an interval scale output in the sample is derived from the subtraction of nonnegative linear combination of ratio scale outputs and nonnegative linear combination of ratio scale inputs. There are also cases in which an interval scale input is derived from the subtraction of nonnegative linear combination of ratio scale inputs and nonnegative linear combination of ratio scale outputs. Lee and Choi (2010) called such interval scale output and input a cross redundancy. They proved that the addition or deletion of a cross-redundant output variable does not affect the efficiency estimates yielded by the CCR or BCC models. In this paper, we present an extension of cross redundancy of interval scale outputs and inputs in DEA models. We prove that the addition or deletion of a cross-redundant output and input variable does not affect the efficiency estimates yielded by the CCR or BCC models.


Sign in / Sign up

Export Citation Format

Share Document