scholarly journals Scintigraphic imaging of focal hypoxic tissue: development and clinical applications of 123I-IAZA

2002 ◽  
Vol 45 (spe) ◽  
pp. 69-81 ◽  
Author(s):  
Leonard I. Wiebe ◽  
Alexander J. B. McEwan

Affected tissues in a number of diseases, including cancer, stroke, cardiac infarction and diabetes, develop focal tissue hypoxia during their progression. The presence of hypoxic tissue may make the disease refractory to therapy, as in the case of solid tumor therapy using low LET ionizing radiation. In other pathologies, the detection of viable but hypoxic tissues may serve as a prodromal indicator of developing disease (e.g. diabetes),or as a prognostic indicator for management of the disease (e.g. stroke). Over the past two decades, a number of hypoxia radioimaging agents have been developed and tested clinically. Of these, 18F-Fmiso and 123I-IAZA are the most widely used radiotracers for PET and SPECT/planar imaging, respectively. IAZA and Fmiso are a 2-nitroimidazoles that chemically bind to subcellular components of viable hypoxic tissues. They sensitize hypoxic tumour to the killing effects of ionizing radiation via mechanisms that mimic the radiosensitizing effects of oxygen, and are therefore called oxygen mimetics. The oxygen mimetic effect is attributable in large part to the covalent binding of reductively-activated nitroimidazole intermediates to critical cellular macromolecules. Nitroimidazoles labelled with gamma-emitting radionuclides (e.g. 18F-Fmiso and 123I-IAZA) have been used as scintigraphic markers of tumour hypoxia, based on the need to identify radioresistant hypoxic tumour cells as part of the radiotherapy planning process. Broader interest in non-invasive, imaging-based identification of focal hypoxia in a number of diseases has extended hypoxia studies to include peripheral vascular disease associated with diabetes, rheumatoid arthritis, stroke, myocardial ischaemia, brain trauma and oxidative stress. In this review, the current status of hypoxia-selective studies with 123I-IAZA , an experimental diagnostic radiopharmaceutical, is reviewed with respect to its pre-clinical development and clinical applications.

2020 ◽  
Vol 16 (34) ◽  
pp. 2863-2878
Author(s):  
Yang Liu ◽  
Qian Du ◽  
Dan Sun ◽  
Ruiying Han ◽  
Mengmeng Teng ◽  
...  

Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. Unfortunately, treatments often fail because of the development of drug resistance, the underlying mechanisms of which remain unclear. Circulating tumor DNA (ctDNA) is free DNA released into the blood by necrosis, apoptosis or direct secretion by tumor cells. In contrast to repeated, highly invasive tumor biopsies, ctDNA reflects all molecular alterations of tumors dynamically and captures both spatial and temporal tumor heterogeneity. Highly sensitive technologies, including personalized digital PCR and deep sequencing, make it possible to monitor response to therapies, predict drug resistance and tailor treatment regimens by identifying the genomic alteration profile of ctDNA, thereby achieving precision medicine. This review focuses on the current status of ctDNA biology, the technologies used to detect ctDNA and the potential clinical applications of identifying drug resistance mechanisms by detecting tumor-specific genomic alterations in breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammad-Sedigh Khosravi ◽  
Alireza Samimiat ◽  
Bahar Mazaheri ◽  
Farzaneh Ashrafi ◽  
Ardeshir Talebi ◽  
...  

Backgrounds. Cisplatin (CP) still is a novel choice for solid tumor therapy, but it is accompanied with the side effect of nephrotoxicity. Hydration may reduce the risk of CP-induced nephrotoxicity, while the issue is still challenging. In this study, five types of hydration protocols including saline, mannitol, dextrose saline, saline plus furosemide, and saline plus mannitol were examined in both sexes of rats during CP therapy. Methods. Seventy-six male and female Wistar rats in 14 groups of experiments were subjected to CP therapy, and five types of hydration protocols were implemented, and the induced nephrotoxicity was evaluated via biochemical markers, kidney function parameters, and pathology investigation. Results. Male and female rats had different responses to hydration protocol types. The higher mortality rate was seen in female rats that received mannitol or dextrose hydration types. In addition, the serum levels of blood urea nitrogen (BUN) and creatinine (Cr) and sodium excretion fraction (ENa%) increased and the clearance of Cr (ClCr) decreased significantly ( P < 0.05 ) in female rats hydrated with saline plus furosemide or mannitol plus saline-treated groups. The worsened condition in male rats is observed in the mannitol hydration group with a significant decrease of ClCr and significant increase of serum BUN and Cr and ENa% ( P < 0.05 ). The higher kidney tissue damage score (KTDS) in the mentioned groups verified the findings. Conclusion. Hydration with mannitol or dextrose promotes the risk of nephrotoxicity during CP therapy with more intensity on the female.


2019 ◽  
Vol 7 (12) ◽  
pp. 269-269 ◽  
Author(s):  
Huan Sun ◽  
Hou-Dong Zuo ◽  
Qiao Lin ◽  
Dan-Dan Yang ◽  
Ting Zhou ◽  
...  

2015 ◽  
Vol 49 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Stasa Jelercic ◽  
Mirjana Rajer

AbstractBackground. PET-CT is becoming more and more important in various aspects of oncology. Until recently it was used mainly as part of diagnostic procedures and for evaluation of treatment results. With development of personalized radiotherapy, volumetric and radiobiological characteristics of individual tumour have become integrated in the multistep radiotherapy (RT) planning process. Standard anatomical imaging used to select and delineate RT target volumes can be enriched by the information on tumour biology gained by PET-CT. In this review we explore the current and possible future role of PET-CT in radiotherapy treatment planning. After general explanation, we assess its role in radiotherapy of those solid tumours for which PET-CT is being used most.Conclusions. In the nearby future PET-CT will be an integral part of the most radiotherapy treatment planning procedures in an every-day clinical practice. Apart from a clear role in radiation planning of lung cancer, with forthcoming clinical trials, we will get more evidence of the optimal use of PET-CT in radiotherapy planning of other solid tumours


Sign in / Sign up

Export Citation Format

Share Document