scholarly journals Simultaneous determination of clobutinol hydrochloride and doxylamine succinate from syrups by RP HPLC using a new stationary phase containing embedded urea polar groups

2012 ◽  
Vol 48 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Paulo Cesar Pires Rosa ◽  
Isabel Cristina Sales Fontes Jardim

A new, simple, fast, reproducible and sensitive reversed phase HPLC method, using a new stationary phase containing embedded urea polar groups, has been developed and validated for the simultaneous determination of clobutinol hydrochloride (CLO) and doxylamine succinate (DOX) in syrups. The determination was carried out on a C8 urea column (125 mm x 3.9 mm i.d., 5 µm particle size) synthetized at the Liquid Chomatography Laboratory (LabCrom) of the Chemistry Institute of Unicamp. The mobile phase consisted of a mixture of acetonitrile:methanol:phosphate buffer (pH 2.5) in the gradient mode. The diode array detector (DAD) was operated at 230 nm for CLO and 262 nm for DOX. The method showed adequate precision, with relative standard deviations (RSD) less than 1%. The presence of the excipients did not interfere in the results of the analysis. Accuracy was determined by adding standards of the drugs to a placebo and good recovery values were obtained. The analytical curves were linear (r² 0.9999 for CLO and 0.9998 for DOX) over a wide concentration range (2.4-336 µg mL-1 for CLO and 2.3-63 µg mL-1 for DOX). The solutions were stable for at least 72 hours at room temperature. The criteria for validation using the ICH guidelines were fulfilled.

2019 ◽  
Vol 57 (9) ◽  
pp. 790-798 ◽  
Author(s):  
Mahmoud A Tantawy ◽  
Soheir Alweshahy ◽  
Dalia A Elshabasy ◽  
Nadia F Youssef

Abstract A selective reversed phase high performance liquid chromatography/photodiode array detector (RP-HPLC/PAD) method has been developed for simultaneous determination of the three co-administrated deflazacort, aprepitant and granisetron drugs used with chemotherapy. The three cited drugs have been chromatographed on C18 column using a mobile phase consisting of acetonitrile–0.2% v/v triethylamine (80:20 v/v, pH of 6.6 ± 0.05) with isocratic elution and monitored by photodiode array at 220 nm. International conference on harmonization (ICH) guidelines were followed to validate the developed method. Successful application of the developed method was assessed by the simultaneous determination of the studied drugs in pure forms, dosage forms and plasma samples in the ranges of 0.2–20, 0.4–40 and 0.2–20 μg/mL for deflazacort, aprepitant and granisetron, respectively.


2020 ◽  
pp. 1-6
Author(s):  
Magda M. Ayad ◽  
Mervat M. Hosny ◽  
Adel Ehab Ibrahim ◽  
Omar M. El-Abassy ◽  
Fathalla F. Belal

Abstract In the last few years, the use of surfactants as mobile phase additives in reversed phase liquid chromatography (RPLC) has been steadily developing and improving. Surfactants modify the polarity of the stationary phase which in turn decreases the amount of organic solvent required for elution of the analytes rendering the methodologies linked to them greener and more eco-friendly. Brij-35 is a fatty alcohol ethoxylates non ionic surfactant, which is less widely used as mobile phase additive. Brij-35 can decrease stationary phase polarity while remaining neutral. In this research, Brij-35 was studied in the separation and determination of marketed antihypertensive combination therapy composed of triamterene (TRM) and xipamide (XIP). TRM and XIP are diuretics used for treatment of essential hypertension and associated edema conditions. Chromatographic separation was achieved on RP-C18 column (Kinetix®, 5 µm, 15 cm × 4.6 mm) at flow rate 1  mL  min−1 and UV-detection at 254 nm. Isocratic elution was performed using mobile phase composed of 0.1 M Brij-35: methanol (MeOH) (60:40, v/v). The analytes were well separated and quantified within linearity ranges of 5–50 µg mL−1 for both drugs in short retention time (2.6 and 5.3 min. for TRM and XIP, respectively). Since claiming greenness is not enough, Green Analytical Procedure Index (GAPI) was used to demonstrate the superiority of the proposed method over the previously reported methods. GAPI is a new metric for evaluation of the ecological impact of analytical procedures. The proposed method was validated according to ICH guidelines and applied successfully for simultaneous determination of the drugs in their co-formulated tablets.


2020 ◽  
Vol 32 (1) ◽  
pp. 39-43
Author(s):  
Abdul Shakoor ◽  
Mahmood Ahmed ◽  
Rabia Ikram ◽  
Sajad Hussain ◽  
Arifa Tahir ◽  
...  

The present work aimed to develop and validate a simple, rapid, sensitive, accurate, and precise method for simultaneous determination of metformin hydrochloride and vildagliptin in tablet and biological samples. Isocratic elution of both the analytes was performed at 35 °C by injecting 20 μL into Thermo Hypersil ODS C18 column (5 μm, 4.6 mm× 250 mm), while the flow rate was set to 0.8 mL/min. The mobile phase comprised of methanol, acetonitrile, and phosphate buffer (5:30:65, v/v, pH 3.5), and wavelength was selected at 212 nm. The overall run time per sample was 7.0 min with a retention time of 3.36 and 5.41 min for metformin hydrochloride and vildagliptin, respectively. The calibration curve was linear from 10–140 μg/mL for metformin and 1–14 μg/mL for vildagliptin with a coefficient of determination (R2) ≤ 0.9919, while repeatability and reproducibility (expressed as relative standard deviation) were lower than 1.13 and 0.97%, respectively. Force degradation studies indicated a complete separation of the analytes in the presence of their degradation products providing a high degree of method specificity. The proposed reversed-phase high-performance liquid chromatography (RP-HPLC) method was demonstrated to be simple and rapid for the determination of metformin hydrochloride and vildagliptin in commercially available tablet and biological samples providing recoveries ranged between 100.13–100.29%.


2009 ◽  
Vol 92 (4) ◽  
pp. 1060-1063 ◽  
Author(s):  
Yanqing Zhang ◽  
Junbo Xie ◽  
Wen-Qian Chen ◽  
Tian-Yan Zhou ◽  
Wei Lu

Abstract A sensitive HPLC method with simple extraction was developed for simultaneous determination of huperzine A (HupA) and huperzine B (HupB) in Huperzia serrata, H. crispata, H. miyoshiana, and Lycopodiastrum casuarinoides. In order to avoid conventional multiple-step and time-consuming sample preparation methods, direct reflux extraction with alkaline chloroform was adopted. The quantitative determination was conducted by reversed-phase HPLC with a photodiode array detector set at 308 nm. Separation was performed on a Luna C18 column (250 4.6 mm id, 5 m) with methanol0.2 aqueous acetic acid (18 + 82, v/v) mobile phase. The method was validated for accuracy, reproducibility, precision, and limits of detection and quantification. Quantification of the two active compounds in the samples was performed by this newly developed method, and the content of HupA and HupB varied substantially among four different species. The satisfactory results indicated that the developed method can readily be utilized for quality control of the species of Huperziaceae and Lycopodiaceae containing the two compounds.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vaibhav S. Adhao ◽  
Suraj R. Chaudhari ◽  
Jaya P. Ambhore ◽  
Sunil Sangolkar ◽  
Raju R. Thenge ◽  
...  

Abstract Background Human immunodeficiency virus (HIV) causes severe life-threatening condition, i.e., AIDS. HIV destabilises an individual’s ability to prevent infection. Therefore, the combine medication lamivudine (LVD) and tenofovir disoproxil fumarate (TDF) are prescribed to suppress the amount of HIV infection in individual’s body; thus, the individual’s immune system could function properly. Consequently, the objective of present research work was to investigate robust and sensitive liquid chromatography avenue for simultaneous determination of lamivudine and tenofovir disoproxil fumarate in pure material and combined dosage form. Results The reversed-phase chromatographic separation has been performed through Hypersil BDS C18 column using solvent system composed of 10 mM potassium dihydrogen phosphate (pH 4.0): acetonitrile (60:40% v/v). The determination was executed at 30 oC at 1 mL/min rate for flow of solvent system through column. The eluents of column were monitored at 265 nm using Photodiode Array detector has revealed admirable retention times, i.e., 4.67 and 8.78 min for both drugs, respectively. The calibration curve demonstrated excellent linearity in the range of 10–50 μg/mL for lamivudine and tenofovir disoproxil fumarate with better determination coefficients was more than (r2 0.999). Conclusion The estimable method was effectively validated with respect to accuracy, precision, sensitive (limit of detection and limit of quantitation), robustness, ruggedness, and for selectivity and specificity. The value less than 2 for percentage relative standard deviation for accuracy, precision, robustness, and ruggedness satisfying the acceptance criteria as per procedure of International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.


2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 16-20
Author(s):  
L Mohankrishna ◽  
◽  
P. J. Reddy ◽  
B. P Reddy. ◽  
P. Navya

A sensitive and precise HPLC procedure has been developed for the assay of amphotericin B in bulk samples and pharmaceutical formulations by using a C18 column [Kromosil, C18, (5 µm, 4.6mm x 250 mm; Make. Waters)], and mobile phase combination is 1% formic acid in water and acetonitrile in ratio of 45:55 V/V. The procedure has been validated as per the ICH guidelines. The λmax of detection was fixed at 407 nm, so that there was less interference from mobile phase with highest sensitivity according to UV analysis. Calibration plots were linear in the range of 10-100 µg/mL and the LOD and LOQ were 0.02 µg/mL and 0.06 µg/mL respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of amphotericin B in different formulations.


Sign in / Sign up

Export Citation Format

Share Document