Double amount DNA in queen fat body cells: Reproductive division of labor and endoreduplication in termites

2016 ◽  
Author(s):  
Tomonari Nozaki
2020 ◽  
Author(s):  
Rachel A. Johnston ◽  
Philippe Vullioud ◽  
Jack Thorley ◽  
Henry Kirveslahti ◽  
Leyao Shen ◽  
...  

AbstractIn some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding ‘queen’ status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also up-regulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rachel A Johnston ◽  
Philippe Vullioud ◽  
Jack Thorley ◽  
Henry Kirveslahti ◽  
Leyao Shen ◽  
...  

In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also up-regulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.


2019 ◽  
Author(s):  
David Yanni ◽  
Shane Jacobeen ◽  
Pedro Márquez-Zacarías ◽  
Joshua S Weitz ◽  
William C. Ratcliff ◽  
...  

Reproductive division of labor (e.g., germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e., productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e., productivity is a concave function of specialization). Through analytical theory and evolutionary individual based simulations, our work demonstrates that reproductive specialization is strongly favored in sparse networks of cellular interactions, such as trees and filaments, that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization. More broadly, we find that specialization is strongly favored, despite saturating returns on investment, in a wide range of scenarios in which sharing is asymmetric.


Sign in / Sign up

Export Citation Format

Share Document