reproductive division
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 49)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Hiroyuki Shimoji ◽  
Shigeto Dobata

Reproductive division of labour is a hallmark of eusocial insects. However, its stability can often be hampered by the potential for reproduction by otherwise sterile nest-mates. Dominance hierarchy has a crucial role in some species in regulating which individuals reproduce. Compared with those in vertebrates, the dominance hierarchies in eusocial insects tend to involve many more individuals, and should require additional selective forces unique to them. Here, we provide an overview of a series of studies on dominance hierarchies in eusocial insects. Although reported from diverse eusocial taxa, dominance hierarchies have been extensively studied in paper wasps and ponerine ants. Starting from molecular physiological attributes of individuals, we describe how the emergence of dominance hierarchies can be understood as a kind of self-organizing process through individual memory and local behavioural interactions. The resulting global structures can be captured by using network analyses. Lastly, we argue the adaptive significance of dominance hierarchies from the standpoint of sterile subordinates. Kin selection, underpinned by relatedness between nest-mates, is key to the subordinates' acceptance of their positions in the hierarchies. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew V. Suarez ◽  
Michael A. D. Goodisman

Eusociality represents an extreme form of social behavior characterized by a reproductive division of labor. Eusociality necessarily evolved through kin selection, which requires interactions among related individuals. However, many eusocial taxa also show cooperation between non-kin groups, challenging the idea that cooperative actions should only occur among relatives. This review explores the causes and consequences of non-kin cooperation in ants. Ants display a diversity of behaviors that lead to non-kin cooperation within and between species. These interactions occur among both reproductive and non-reproductive individuals. The proximate and ultimate mechanisms leading to non-kin cooperative interactions differ substantially depending on the biotic and abiotic environment. We end this review with directions for future research and suggest that the investigation of non-kin cooperative actions provides insight into processes leading to social evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Elsner ◽  
Klaus Hartfelder ◽  
Judith Korb

AbstractDivision of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marina N. Psalti ◽  
Dustin Gohlke ◽  
Romain Libbrecht

Abstract Background The reproductive division of labor of eusocial insects, whereby one or several queens monopolize reproduction, evolved in a context of high genetic relatedness. However, many extant eusocial species have developed strategies that decrease genetic relatedness in their colonies, suggesting some benefits of the increased diversity. Multiple studies support this hypothesis by showing positive correlations between genetic diversity and colony fitness, as well as finding effects of experimental manipulations of diversity on colony performance. However, alternative explanations could account for most of these reports, and the benefits of diversity on performance in eusocial insects still await validation. In this study, we experimentally increased worker diversity in small colonies of the ant Lasius niger while controlling for typical confounding factors. Results We found that experimental colonies composed of workers coming from three different source colonies produced more larvae and showed more variation in size compared to groups of workers coming from a single colony. Conclusions We propose that the benefits of increased diversity stemmed from an improved division of labor. Our study confirms that worker diversity enhances colony performance, thus providing a possible explanation for the evolution of multiply mated queens and multiple-queen colonies in many species of eusocial insects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margarita Orlova ◽  
Etya Amsalem

AbstractQueen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.


2021 ◽  
Author(s):  
Guy Cooper ◽  
Hadleigh Frost ◽  
Ming Liu ◽  
Stuart West

Recent theory has overturned the assumption that accelerating returns from individual specialisation are required to favour the evolution of division of labour. Yanni et al. (2020) showed that topologically constrained groups, where cells cooperate with only direct neighbours such as for filaments or branching growths, can evolve a reproductive division of labour even with diminishing returns from individual specialisation. We developed a conceptual framework and specific models to investigate the factors that can favour the initial evolution of reproductive division of labour. We found that selection for division of labour in topologically constrained groups: (1) is not a single mechanism to favour division of labour – depending upon details of the group structure, division of labour can be favoured for different reasons; (2) always involves an efficiency benefit at the level of group fitness; and (3) requires a mechanism of coordination to determine which individuals perform which tasks. Given that such coordination is unlikely to evolve before division of labour, this limits the extent to which topological constraints could have favoured the initial evolution of division of labour. We conclude by suggesting experimental designs that could determine why division of labour is favoured in the natural world.


2021 ◽  
Author(s):  
Margarita Orlova ◽  
Etya Amsalem

Abstract Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act in synergy to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.


2021 ◽  
Author(s):  
Mariana Velasque ◽  
Tan Yongkai ◽  
Andrew W Liu ◽  
Nicholas M Luscombe ◽  
Jai A Denton

Eusocial insects are characterized by the presence of division of labour between reproductive (i.e. workers) and non-reproductive (i.e. queens) individuals. In eusocial insects, such as wasps, ants, honeybees and termites, such reproductive division of labour is mediated by the use of unique pheromones. In eusocial animals, pheromones control two distinct aspects of the division of labour: reproduction and division of tasks amongst workers. It has been suggested that eusociality arose independently on several occasions from pheromone-mediated co-option of pathways regulating the reproductive life cycle of solitary insects. Transcriptomic analysis has supported the co-option of similar pathways in each independently evolved eusocial insect. Using a solitary insect model, we sought to determine if these similar transcriptomic signals resulted from the co-option of similar pathways or varying pathways subject to convergent evolution. We measured the transcriptomic and physiological response of Drosophila melanogaster to pheromones from bumblebees, honey bees, and termites. In each case we observed a strong physiological response - the reduction of ovary size. However, employing conventional differential gene expression analysis and several forms of network analysis, we were unable to detect any conserved pathway or genes acting as a primer for eusociality. This strongly suggests that pheromone-mediated eusociality is the result of convergent evolution. Wherein a physiological response, such as reduced reproductive capacity, acts as the primer for eusociality and is subsequently refined.


2021 ◽  
Author(s):  
Enrico Sandro Colizzi ◽  
Renske MA Vroomans ◽  
Daniel E Rozen ◽  
Roeland M.H. Merks ◽  
Bram van Dijk

Division of labor can evolve when social groups benefit from the functional specialisation of its members. Recently, a novel means of coordinating division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where functionally specialized cells are generated through large-scale genomic re-organisation. Here, we investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multi-scale mathematical model of bacterial evolution. We let bacteria compete on the basis of their antibiotic production and growth rate in a spatially structured environment. Bacterial behavior is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves that partitions growth-promoting genes and antibiotic-coding genes to distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating antibiotic-producing mutants from non-producing (and weakly-producing) progenitors, in agreement with experimental observations. Mutants protect their colony from competitors but are themselves unable to replicate. We further show that this division of labor enhances the local competition between colonies by promoting antibiotic diversity. These results show that genomic organisation can co-evolve with genomic instabilities to enable reproductive division of labor.


2021 ◽  
Author(s):  
Yuki Mitaka ◽  
Tadahide Fujita

Abstract Chemical communication underlies the sophisticated colony organization of social insects. In these insects, cuticular hydrocarbons (CHCs) play central roles in nestmate, task, and caste recognition, which contribute to maintenance of the social and reproductive division of labor. Queen-specific CHCs reflect queen fertility status and function as a queen recognition pheromone, triggering aggregation responses around the queens. However, there are only a few studies about the royal recognition mechanism in termites, and particularly, no study has reported about queen-specific CHCs in the species using asexual queen succession (AQS) system, in which the primary queen is replaced by neotenic queens produced parthenogenetically. In this study, we identified the CHC pheromone for neotenic queen recognition in the AQS termite species Reticulitermes speratus. Gas chromatography-mass spectrometry analyses revealed that the relative amount of n-pentacosane was disproportionately greater in the CHC profiles of queens than in the CHC profiles of kings, soldiers, and workers. Furthermore, we investigated the cuticular chemicals of the queen aggregate workers; bioassays demonstrated that n-pentacosane shows a worker arrestant activity in the presence of workers’ cuticular extract. These results suggest that R. speratus workers identify whether each individual is a neotenic queen by recognizing the relatively higher ratio of n-pentacosane in the conspecific CHC background. Moreover, they suggest that termites have evolved queen recognition behavior, independently of social hymenopterans.


Sign in / Sign up

Export Citation Format

Share Document