Frequency Response Characteristics of a Tube-Type Condenser with Time Varying Heat Flux and Two-Phase Pressure Drop

Author(s):  
G. L. Wedekind ◽  
B. L. Bhatt
2020 ◽  
Vol 57 (17) ◽  
pp. 171202
Author(s):  
王浩全 Wang Haoquan ◽  
王雅慧 Wang Yahui ◽  
任时磊 Ren Shilei ◽  
孟乾泰 Meng Qiantai ◽  
王玉磊 Wang Yulei

Author(s):  
Farzad Houshmand ◽  
Hyoungsoon Lee ◽  
Mehdi Asheghi ◽  
Kenneth E. Goodson

As the proper cooling of the electronic devices leads to significant increase in the performance, two-phase heat transfer to dielectric liquids can be of an interest especially for thermal management solutions for high power density devices with extremely high heat fluxes. In this paper, the pressure drop and critical heat flux (CHF) for subcooled flow boiling of methanol at high heat fluxes exceeding 1 kW/cm2 is investigated. Methanol was propelled into microtubes (ID = 265 and 150 μm) at flow rates up to 40 ml/min (mass fluxes approaching 10000 kg/m2-s), boiled in a portion of the microtube by passing DC current through the walls, and the two-phase pressure drop and CHF were measured for a range of operating parameters. The two-phase pressure drop for subcooled flow boiling was found to be significantly lower than the saturated flow boiling case, which can lead to lower pumping powers and more stability in the cooling systems. CHF was found to be increasing almost linearly with Re and inverse of inner diameter (1/ID), while for a given inner diameter, it decreases with increasing heated length.


2016 ◽  
Vol 366 ◽  
pp. 151-156
Author(s):  
Bei Chen Zhang ◽  
Qing Lian Li ◽  
Yuan Wang ◽  
Jian Qiang Zhang

Two-phase pressure drop fluctuations during flow boiling in a single mini-channel were experimentally investigated. Degassed water was tested in circular cross section mini-channels with the hydraulic diameter of 1.0 mm at liquid mass fluxes range of 21.19-84.77 kg m-2 s-1 and heat fluxes of 0~155.75 kW m-2. Effects of heat flux and mass flux on pressure drop fluctuations were discussed based on the time and frequency domain analysis of the measured pressure drop. Two types of fluctuations were identified, which are the incipient boiling fluctuation (IBF) and the explosive boiling fluctuation (EBF) respectively. The IBF is a low frequency low amplitude fluctuation, which relates to the bubble dynamics when incipient boiling occurs. It is sensitive to the thermal and flow conditions. With the increase of heat flux and mass flux, the IBF is suppressed. The EBF is a low frequency high amplitude fluctuation, which occurs near the critical heat flux.


Author(s):  
R. Yun ◽  
Y. Kim

Two-phase pressure drops of CO2 are investigated in mini tubes with inner diameters of 2.0 and 0.98 mm and in microchannels with hydraulic diameters from 1.08 to 1.54 mm. For the mini tubes, the tests were conducted with a variation of mass flux from 500 to 3570 kg/m2s, heat flux from 7 to 48 kW/m2, while maintaining saturation temperatures at 0°C, 5°C and 10°C. For the microchannels, mass flux was varied from 100 to 400 kg/m2s, and heat flux was altered from 5 to 20 kW/m2. A direct heating method was used to provide heat into the refrigerants. The pressure drop of CO2 in mini tubes shows very similar trends with that in large diameter tubes. Although the microchannel has a small hydraulic diameter, two-phase effects on frictional pressure drop are significant. The Chisholm parameter of the Lockhart and Martinelli correlation is modified by considering diameter effects on the two-phase frictional multiplier.


Author(s):  
Daxiang Deng ◽  
Qingsong Huang ◽  
Yanlin Xie ◽  
Wei Zhou ◽  
Xiang Huang ◽  
...  

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate two-phase pressure drop in a circular vertical mini-channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. A uniform heat flux is applied to the test section by DC power supply. Two phase frictional pressure drop variation with mass flux, vapour quality and heat flux was determined. The experimental results are compared to predictive methods available in literature for frictional pressure drop. The Homogeneous model and the correlation of Mu¨ller Steinhagen et al. [14] are in good agreement with our experimental data with MAD of 27% and 26% respectively.


1998 ◽  
Vol 120 (3) ◽  
pp. 577-582 ◽  
Author(s):  
C. Dinu ◽  
D. E. Beasley ◽  
R. S. Figliola

The transient response and frequency response of a constant-temperature platinum film gage are computationally modeled for application to heat flux measurement. The probe consists of a thin platinum film (sensor) deposited on a Pyrex substrate, and coated with aluminum oxide. The probe is exposed to a convective environment, and the power required to maintain the sensor at a constant temperature is a direct indication of the local, instantaneous heat transfer rate. In application, the probe is mounted in a heated, high thermal conductivity material, creating an isothermal heat transfer surface. A two-dimensional numerical model was developed to represent the sensor, the Pyrex substrate and the coating. Ideally, the probe would be operated with the platinum at identically the same temperature as the isothermal surface. In the present study, the effects of non-ideal operating conditions, resulting in differences between the sensor and surface temperature, are examined. Frequency response characteristics are presented in a nondimensional form. The results of this modeling effort clearly indicate the importance of precise control over the sensor temperature in employing the present method for heat flux measurement. With the sensor temperature equal to the isothermal surface temperature, the probe calibration is insensitive to the heat transfer rate over a wide range of heat transfer coefficients. However, a 0.5°C difference between the sensor and surface temperatures yields a change in the calibration of approximately 20 percent over a range of heat transfer coefficient of 500 W/m2K. At an input frequency of 10 Hz and an average heat transfer coefficient of 175 W/m2K, amplitude errors increase from 3 percent to 35 percent as the temperature difference changes from zero to 1°C. These results are useful guide to calibration, operation, and data reduction in active heat flux measurement.


Author(s):  
Ruosu Wang ◽  
Changhong Peng ◽  
Tao Zhou ◽  
Shichao Wang

In this paper, according to a separated phase flow model for annular two-phase flow in the vertical annular channel, the liquid film thickness, void fraction and two-phase pressure drop along the flow channel are predicted. The calculated pressure drop values are compared with that measured in experiment in the range of mass flux from 38.8 to 163.1kg/m2s; pressure from 1.5 to 6.0 MPa; and heat flux from 4.9 to 50.7kW/m2 for inside tube and from 4.2 to 78.8kW/m2 for outside tube. It can be found that the model can predict the pressure drop well. With the mass flux increasing and the gap of the annular channel decreasing, pressure drop increases.


Sign in / Sign up

Export Citation Format

Share Document