Call Center as Retrial Queueing System

2007 ◽  
Vol 39 (5) ◽  
pp. 37-47 ◽  
Author(s):  
Elena V. Koba ◽  
Svetlana V. Pustovaya
2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


Author(s):  
Kalyanaraman Rathinasabapathy

A retrial queueing system with two types of batch arrivals is considered. The arrivals are called type I and type II customers. The type I customers arrive in batches of size k with probability c_k and type II customers arrive in batches of size k with probability d_k. Service time distributions are identical independent distributions and are different for both type of customers. If the arriving customers are blocked due to server being busy, type I customers are queued in a priority queue of infinity capacity whereas type II customers entered into retrial group in order to seek service again after a random amount of time. For this model the joint distribution of the number of customers in the priority queue and in the retrial group in closed form is obtained. Some particular models and operating characteristics are obtained. A numerical study is also carried out.


2011 ◽  
Vol 4 (4) ◽  
pp. 214-223 ◽  
Author(s):  
Muthu Ganapathi Subramania ◽  
Ayyappan . ◽  
Gopal Sekar

Sign in / Sign up

Export Citation Format

Share Document