Influence of thermal radiation and viscous dissipation on MHD flow of UCM fluid over a porous stretching sheet with higher order chemical reaction

Author(s):  
Vinodkumar Reddy Mulint ◽  
Lakshminarayana Pallavarapu
Author(s):  
Vinodkumar Reddy Mulinti ◽  
P Lakshminarayana

Abstract In this paper, we investigated the heat and mass transfer analysis of an MHD convection flow of Maxwell nanofluid with Cattaneo-Christov heat flux model along with a porous stretching sheet. The effects of thermal radiation, viscous dissipation, suction/injection and higher-order chemical reaction are taken into consideration. By using similarity transformations the governing equations of the study are reduced into a system of ordinary differential equations and solved numerically by using the BVP5C MATLAB package. The effects of dimensionless parameters on the present study are deliberated with the aid of graphs and tables. It is found that an increase in thermal Grashof number, thermal radiation and thermal relaxation time parameter drops the temperature field. The heat transfer rate is declined with enhancing heat source, Brownian motion and thermophoresis parameters. Also, observed that the concentration field reduces with the rising value of chemical reaction. The numerically computed values of Nusselt number and Sherwood number are validated with existing literature and found a good agreement.


Author(s):  
Hunegnaw Dessie ◽  
Naikoti Kishan

In this paper, unsteady MHD flow of heat and mass transfer of Cu-water and TiO2-water nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction is investigated. The governing partial differential equations with the corresponding boundary conditions are transformed to a system of non-linear ordinary differential equations and solved using Keller box method. The velocity, temperature and concentration profiles are obtained and the influences of various relevant parameters, namely the magnetic parameter M, Prandtl number Pr, Eckert number Ec, Schmidt number Le , chemical reaction parameter K,unsteadiness parameter S and the Soret number Sr on velocity, temperature and concentration profiles are discussed. The skin-friction coefficient–f''(0), heat transfer coefficient –θ'(0) and mass transfer coefficient –φ'(0) are presented in tables. A comparison with published results is also presented and found in good agreement. Keywords: MHD; Keller box method; unsteady; nanofluid; non-uniform heat/source/sink; chemical reaction; viscous dissipation.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Syed Muhammad Ali Haider ◽  
Bagh Ali ◽  
Qiuwang Wang ◽  
Cunlu Zhao

In this paper, a mathematical model is established to examine the impacts of Stefan blowing on the unsteady magnetohydrodynamic (MHD) flow of an electrically conducting nanofluid over a stretching sheet in the existence of thermal radiation, Arrhenius activation energy and chemical reaction. It is proposed to use the Buongiorno nanofluid model to synchronize the effects of magnetic and electric fields on the velocity and temperature fields to enhance the thermal conductivity. We utilized suitable transformation to simplify the governing partial differential equation (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The obtained equations were solved numerically with the help of the Runge–Kutta 4th order using the shooting technique in a MATLAB environment. The impact of the developing flow parameters on the flow characteristics is analyzed appropriately through graphs and tables. The velocity, temperature, and nanoparticle concentration profiles decrease for various values of involved parameters, such as hydrodynamic slip, thermal slip and solutal slip. The nanoparticle concentration profile declines in the manifestation of the chemical reaction rate, whereas a reverse demeanor is noted for the activation energy. The validation was conducted using earlier works published in the literature, and the results were found to be incredibly consistent.


Sign in / Sign up

Export Citation Format

Share Document