End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China

2009 ◽  
Vol 83 (5) ◽  
pp. 718-738 ◽  
Author(s):  
Haijun Song ◽  
Jinnan Tong ◽  
Z. Q. Chen ◽  
Hao Yang ◽  
Yongbiao Wang

Newly obtained foraminifer faunas from the Permian-Triassic (P-Tr) transition at the Dajiang and Bianyang sections in the Nanpanjiang Basin, South China, comprise 61 species in 40 genera. They belong to thePalaeofusulina sinensisZone, the youngest Permian foraminifer zone in South China. Quantitative analysis reveals that the last occurrences of more than a half of species (28/54) fall into a 60-cm-interval at the uppermost Changhsingian skeletal packstone unit and thus calibrate the end-Permian extinction to the skeletal packstonecalcimicrobial framestone boundary. About 93% (54/58) of species of the latest Permian assemblage became extinct in the P-Tr crisis. Four major foraminiferal groups, the Miliolida, Fusulinida, Lagenida, and Textulariina, have extinction rates up to 100%, 96%, 92%, and 50%, respectively, and thus experienced selective extinctions. BothHemigordius longusand ?Globivalvulina bulloidestemporarily survived the end-Permian extinction event and extended into the earliest Triassic but became extinct soon after. The post-extinction foraminifer assemblage is characterized by the presence of both disaster taxa and Lazarus taxa. Foraminifer distribution near the P-Tr boundary also reveals that the irregular contact surface at the uppermost Permian may be created by a massive submarine dissolution event, which may be coeval with the end-Permian mass extinction. A new species,Rectostipulina hexamerata,is described here.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7361
Author(s):  
Jeffrey R. Thompson ◽  
Renato Posenato ◽  
David J. Bottjer ◽  
Elizabeth Petsios

The end-Permian mass extinction (∼252 Ma) was responsible for high rates of extinction and evolutionary bottlenecks in a number of animal groups. Echinoids, or sea urchins, were no exception, and the Permian to Triassic represents one of the most significant intervals of time in their macroevolutionary history. The extinction event was responsible for significant turnover, with the Permian–Triassic representing the transition from stem group echinoid-dominated faunas in the Palaeozoic to Mesozoic faunas dominated by crown group echinoids. This turnover is well-known, however, the environmental and taxonomic distribution of echinoids during the latest Permian and Early Triassic is not. Here we report on an echinoid fauna from the Tesero Member, Werfen Formation (latest Permian to Early Triassic) of the Dolomites (northern Italy). The fauna is largely known from disarticulated ossicles, but consists of both stem group taxa, and a new species of crown group echinoid,Eotiaris teseroensisn. sp. That these stem group echinoids were present in the Tesero Member indicates that stem group echinoids did not go extinct in the Dolomites coincident with the onset of extinction, further supporting other recent work indicating that stem group echinoids survived the end-Permian extinction. Furthermore, the presence ofEotiarisacross a number of differing palaeoenvironments in the Early Triassic may have had implications for the survival of cidaroid echinoids during the extinction event.


Zootaxa ◽  
2008 ◽  
Vol 1844 (1) ◽  
pp. 37 ◽  
Author(s):  
JOHN S. BUCKERIDGE ◽  
JOHN W. M. JAGT ◽  
ROBERT P. SPEIJER

The discovery of a near-complete shell wall of a small verrucid barnacle from the Lower Danian (Palaeocene) portion of the El Haria Formation as exposed in the El Kef area (northwest Tunisia), permits its description as a new species with characters that, although conforming primarily to Verruca sensu stricto, show some similarities to Altiverruca Pilsbry, 1916, a genus that is not yet known from the fossil record. The present material extends the known geographic distribution of fossil verrucids, and constitutes one of the earliest species of Verruca to be documented subsequent to the Cretaceous/Palaeogene (K/Pg) boundary mass extinction event.


Paleobiology ◽  
2021 ◽  
pp. 1-16
Author(s):  
Junyu Wan ◽  
William J. Foster ◽  
Li Tian ◽  
Thomas L. Stubbs ◽  
Michael J. Benton ◽  
...  

Abstract An increasing number of unexpectedly diverse benthic communities are being reported from microbially precipitated carbonate facies in shallow-marine platform settings after the end-Permian mass extinction. Ostracoda, which was one of the most diverse and abundant metazoan groups during this interval, recorded its greatest diversity and abundance associated with these facies. Previous studies, however, focused mainly on taxonomic diversity and, therefore, left room for discussion of paleoecological significance. Here, we apply a morphometric method (semilandmarks) to investigate morphological variance through time to better understand the ecological consequences of the end-Permian mass extinction and to examine the hypothesis that microbial mats played a key role in ostracod survival. Our results show that taxonomic diversity and morphological disparity were decoupled during the end-Permian extinction and that morphological disparity declined rapidly at the onset of the end-Permian extinction, even though the high diversity of ostracods initially survived in some places. The decoupled changes in taxonomic diversity and morphological disparity suggest that the latter is a more robust proxy for understanding the ecological impact of the extinction event, and the low morphological disparity of ostracod faunas is a consequence of sustained environmental stress or a delayed post-Permian radiation. Furthermore, the similar morphological disparity of ostracods between microbialite and non-microbialite facies indicates that microbial mats most likely represent a taphonomic window rather than a biological refuge during the end-Permian extinction interval.


2000 ◽  
Vol 74 (4) ◽  
pp. 701-711 ◽  
Author(s):  
P. Peláez-Campomanes ◽  
N. López-Martínez ◽  
M.A. Álvarez-Sierra ◽  
R. Daams

A new species of multituberculate mammal,Hainina pyrenaican. sp. is described from Fontllonga-3 (Tremp Basin, Southern Pyrenees, Spain), correlated to the later part of chron C29r just above the K/T boundary. This taxon represents the earliest European Tertiary mammal recovered so far, and is related to otherHaininaspecies from the European Paleocene. A revision of the species ofHaininaallows recognition of a new species,H. vianeyaen. sp. from the Late Paleocene of Cernay (France). The genus is included in the family Kogaionidae Rãdulescu and Samson, 1996 from the Late Cretaceous of Romania on the basis of unique dental characters. The Kogaionidae had a peculiar masticatory system with a large, blade-like lower p4, similar to that of advanced Ptilodontoidea, but occluding against two small upper premolars, interpreted as P4 and P5, instead of a large upper P4. The endemic European Kogaionidae derive from an Early Cretaceous group with five premolars, and evolved during the Late Cretaceous and Paleocene. The genusHaininarepresents a European multituberculate family that survived the K/T boundary mass extinction event.


2006 ◽  
Vol 143 (3) ◽  
pp. 301-327 ◽  
Author(s):  
ZHONG-QIANG CHEN ◽  
KUNIO KAIHO ◽  
ANNETTE D. GEORGE ◽  
JINNAN TONG

Eight brachiopod species in seven genera are described from the Permian–Triassic boundary beds of South China and northern Italy. The brachiopods from northern Italy are described for the first time and include two new species: Orbicoelia dolomitensis Chen and Spirigerella? teseroi Chen. The Permian affinity of these brachiopods and their stratigraphical position above the extinction horizon demonstrate that they are survivors from the end-Permian mass extinction. The surviving brachiopods from South China, which was located at the eastern margin of the Palaeo-Tethys Ocean, are considerably abundant and diverse and are dominated by geographically widespread generalist elements adapted to a wide variety of environments. They were mostly limited to the Upper Permian to lowest Griesbachian. In contrast, the survivors in northern Italy, which was situated at the western margin of the Palaeo-Tethys, comprise elements ranging from the Carboniferous to Permian or widespread Tethyan genera. These survivors did not occur in the pre-extinction western Tethyan oceans but migrated into this region after the end-Permian extinction event. Disaster taxon Lingula proliferated slightly earlier in western Tethyan oceans than in eastern Tethyan regions following the event. Survival brachiopods from both regions appear to have a generic affinity, although they do not share any species. Both South Chinese and Italian survival faunas support the view that the survival interval is the duration when survivors are dominated by geographically widespread generalist organisms adapted to a wide variety of ecological conditions.


Parasitology ◽  
2018 ◽  
Vol 145 (11) ◽  
pp. 1440-1451 ◽  
Author(s):  
Lidia Chitimia-Dobler ◽  
Timo Pfeffer ◽  
Jason A Dunlop

AbstractThe first fossil potentially assignable to the extant hard tick genus Haemaphysalis CL Koch (1844) (Ixodida: Ixodidae) is described from the Late Cretaceous (ca. 99 Ma) Burmese amber of Myanmar. Haemaphysalis (Alloceraea) cretacea sp. nov. is the oldest and only fossil representative of this genus; living members of which predominantly feed on mammals. Their typical hosts are known since at least the Jurassic and the discovery of a mid-Cretaceous parasite, which might have fed on mammals raises again the question of to what extent ticks are coupled to their (modern) host groups. An inferred Triassic split of Argasidae (soft ticks) into the bird-preferring Argasinae and mammal-preferring Ornithodorinae dates to about the time when dinosaurs (later including birds) and mammaliaforms as potential hosts were emerging. Ixodidae may have split into Prostriata and Metastriata shortly after the end-Permian mass extinction, an event which fundamentally altered the terrestrial vertebrate fauna. Prostriata (the genus Ixodes) prefer birds and mammals today, and some may have used groups like cynodonts in the Triassic. Basal metastriate ticks (e.g. Amblyomma) prefer reptiles, but derived metastriates (including Haemaphysalis) again prefer mammals. Here, we may be looking at a younger (Cretaceous?) shift associated with more recent mammalian radiations.


Sign in / Sign up

Export Citation Format

Share Document