The Sponge Family Guadalupiidae in the Texas Permian

2010 ◽  
Vol 84 (5) ◽  
pp. 821-847 ◽  
Author(s):  
Robert M. Finks

New and old species and genera of the family Guadalupiidae (spherulitic hypercalcified demosponges of the order Agelasida) are described or redescribed from the West Texas Permian. The entire family is reviewed and observations are made on the epibionts, growth patterns, functional morphology, ecological relationships, morphologic variability, modular structure, and evolutionary history of these largely reef-dwelling sponges. The stratigraphic distribution of species is also noted; many are limited and can define zones. The new genera Exovasa and Incisimura and the new species Guadalupia auricula, G. cupulosa, G. ramescens, G. microcamera, G. vasa, Cystothalamia megacysta, Lemonea simplex, Incisimura bella, and Exovasa cystauletoides are described. Almost all previously published taxa are redescribed and in some cases redefined. The Guadalupiidae are unique among hypercalcified sponges in having a modular thalamid layer (thalamidarium) covered on the exhalant surface by a non-modular stromatoporoid-like layer (trabecularium).

Author(s):  
Karen A. Lowney

ABSTRACTTwo new genera and species of haplolepids (Chondrostei), Protohaplolepis scotica and Blairolepis loanheadensis, are described from the ironstones of Loanhead, Midlothian (Namurian A, E1); this represents the earliest known record of the family. Protohaplolepis scotica (= Traquair's nomen nudum “Eurylepis scoticus”) shows many features in common with Westoll's hypothetical haplolepid “common ancestor X”, and is possibly ancestral to the Haplolepis–Microhaplolepis line within the family. Blairolepis loanheadensis, known only from a skull roof, shows greater similarities to Parahaplolepis and Pyritocephalus, but differs from these genera in having separate dermopterotics and parietals. Two subfamilies, the Haplolepinae and the Parahaplolepinae, are suggested to reflect the distinct evolutionary lines within the family.A new species, Parahaplolepis westolli, is also described from Newsham, Northumberland (Westphalian B). This species shows a close resemblance to the American species Parahaplolepis tuberculata from Linton, Ohio.A brief discussion of the evolutionary history of the family is presented, along with a summary of its stratigraphical and geographical distribution.


1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


2013 ◽  
Vol 8 (2) ◽  
pp. 299-317 ◽  
Author(s):  
Shohei Sato

AbstractThis article re-examines our understanding of modern sport. Today, various physical cultures across the world are practised under the name of sport. Almost all of these sports originated in the West and expanded to the rest of the world. However, the history of judo confounds the diffusionist model. Towards the end of the nineteenth century, a Japanese educationalist amalgamated different martial arts and established judo not as a sport but as ‘a way of life’. Today it is practised globally as an Olympic sport. Focusing on the changes in its rules during this period, this article demonstrates that the globalization of judo was accompanied by a constant evolution of its character. The overall ‘sportification’ of judo took place not as a diffusion but as a convergence – a point that is pertinent to the understanding of the global sportification of physical cultures, and also the standardization of cultures in modern times.


1993 ◽  
Vol 67 (4) ◽  
pp. 549-570 ◽  
Author(s):  
Bruce S. Lieberman

Phylogenetic parsimony analysis was used to classify the Siegenian–Eifelian “Metacryphaeus group” of the family Calmoniidae. Thirty-eight exoskeletal characters for 16 taxa produced a shortest-length cladogram with a consistency index of 0.49. A classification based on retrieving the structure of this cladogram recognizes nine genera: Typhloniscus Salter, Plesioconvexa n. gen., Punillaspis Baldis and Longobucco, Eldredgeia n. gen., Clarkeaspis n. gen., Malvinocooperella n. gen., Wolfartaspis Cooper, Plesiomalvinella Lieberman, Edgecombe, and Eldredge (used to represent the malvinellid clade), and Metacryphaeus Reed. The malvinellid clade is most closely related to a revised monophyletic Metacryphaeus. Typhloniscus is the basal member of the “Metacryphaeus group,” and the monotypic Wolfartaspis is sister to the clade containing the malvinellids and Metacryphaeus. Six new species are diagnosed: Punillaspis n. sp. A, “Clarkeaspis” gouldi, Clarkeaspis padillaensis, Malvinocooperella pregiganteus, Metacryphaeus curvigena, and Metacryphaeus branisai. Primitively, this group has South African and Andean affinities, and its evolutionary history suggests rapid diversification. In addition, evolutionary patterns in this group, and the distribution of character reversals, call into question certain notions about the nature of adaptive radiations. The distributions of taxa may answer questions about the number of marine transgressive/regressive cycles in the Emsian–Eifelian of the Malvinokaffric Realm.


IAWA Journal ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 493-519 ◽  
Author(s):  
Anaïs Boura ◽  
Timothée Le Péchon ◽  
Romain Thomas

The Dombeyoideae (Malvaceae) are one of the most diversified groups of plants in the Mascarene Islands. Species of Dombeya Cav., Ruizia Cav. and Trochetia DC. are distributed in almost all parts of the archipelago and show a wide diversity in their growth forms. This study provides the first wood anatomical descriptions of 17 out of the 22 Mascarene species of Dombeyoideae. Their wood anatomy is similar to that of previously described species: wide vessels, presence of both apotracheal and paratracheal parenchyma, and storied structure. In addition, we also found a second wood anatomical pattern with narrower vessels, high vessel frequency and thick-walled fibres. The two aforementioned wood patterns are considered in a phylogenetic context and used to trace the evolutionary history of several wood anatomical features. For example, the pseudoscalariform pit arrangement supports a sister group relationship between Trochetia granulata Cordem. and T. blackburniana Bojer ex Baker and may be a new synapomorphy of the genus Trochetia. Finally, wood variability is evaluated in relation to geographic, climatic and biological data. Despite the juvenile nature of some of the specimens studied, we discuss how the habit, but also factors related to humidity, influence the variability observed in the Mascarene Dombeyoideae wood structure.


2021 ◽  
Author(s):  
Keerthic Aswin ◽  
Srinivasan Ramachandran ◽  
Vivek T Natarajan

AbstractEvolutionary history of coronaviruses holds the key to understand mutational behavior and prepare for possible future outbreaks. By performing comparative genome analysis of nidovirales that contain the family of coronaviruses, we traced the origin of proofreading, surprisingly to the eukaryotic antiviral component ZNFX1. This common recent ancestor contributes two zinc finger (ZnF) motifs that are unique to viral exonuclease, segregating them from DNA proof-readers. Phylogenetic analyses indicate that following acquisition, genomes of coronaviruses retained and further fine-tuned proofreading exonuclease, whereas related families harbor substitution of key residues in ZnF1 motif concomitant to a reduction in their genome sizes. Structural modelling followed by simulation suggests the role of ZnF in RNA binding. Key ZnF residues strongly coevolve with replicase, and the helicase involved in duplex RNA unwinding. Hence, fidelity of replication in coronaviruses is a result of convergent evolution, that enables maintenance of genome stability akin to cellular proofreading systems.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 142-150
Author(s):  
Jessica Worthington Wilmer ◽  
Andrew P. Amey ◽  
Carmel McDougall ◽  
Melanie Venz ◽  
Stephen Peck ◽  
...  

Sclerophyll woodlands and open forests once covered vast areas of eastern Australia, but have been greatly fragmented and reduced in extent since European settlement. The biogeographic and evolutionary history of the biota of eastern Australia’s woodlands also remains poorly known, especially when compared to rainforests to the east, or the arid biome to the west. Here we present an analysis of patterns of mitochondrial genetic diversity in two species of Pygopodid geckos with distributions centred on the Brigalow Belt Bioregion of eastern Queensland. One moderately large and semi-arboreal species, Paradelma orientalis, shows low genetic diversity and no clear geographic structuring across its wide range. In contrast a small and semi-fossorial species, Delma torquata, consists of two moderately divergent clades, one from the ranges and upland of coastal areas of south-east Queensland, and other centred in upland areas further inland. These data point to varying histories of geneflow and refugial persistance in eastern Australia’s vast but now fragmented open woodlands. The Carnarvon Ranges of central Queensland are also highlighted as a zone of persistence for cool and/or wet-adapted taxa, however the evolutionary history and divergence of most outlying populations in these mountains remains unstudied.


2002 ◽  
Vol 93 (4) ◽  
pp. 333-353 ◽  
Author(s):  
Julia J. Day

ABSTRACTThe Eocene sparid fauna (Teleostei: Percoidei) from Monte Bolca, Italy and from the London Clay, U.K. is revised based on re-examination of the type material and phylogenetic analyses of primarily osteological data. Two phylogenetic analyses, one of the Eocene taxa and a combined analysis of fossil and extant taxa, were performed. The addition of fossils to the extant data greatly increased numbers of most parsimonious trees, destabilising and obscuring basal relationships within the Sparidae. Combination of the data from fossil and extant data also affected relationships among the fossil taxa, changing some from those recovered using fossil data alone and destabilising others. Successive approximations character weighting supported the inclusion of the Eocene taxa within a monophyletic Sparidae. The genus Sparnodus, as previously conceived, is paraphyletic and is partitioned to remove the paraphyly. Five monotypic genera are recognised, including three new genera, Abromasta, Ellaserrata and Pseudosparnodus. Inclusion of the fossils in the phylogenetic analysis implies a minimum age of origin for the Sparidae of 55 Ma with most Recent sparid fauna in place no later than the Miocene, and provides further evidence that the diversification of feeding strategies occurred early on in the evolutionary history of the group.


1984 ◽  
Vol 8 ◽  
pp. 182-198
Author(s):  
Catherine Badgley

The evolutionary history of humans is well understood in outline, compared to that of many other groups of mammals. But human evolution remains enigmatic in its details, and these are compelling both scientifically and personally because they relate to the biological uniqueness of humans. Humans are placed in the primate family Hominidae, which, in traditional classifications, contains a single living species, Homo sapiens. The closest living relatives of humans are great apes: the chimpanzees Pan paniscus and Pan troglodytes, the gorilla Gorilla gorilla, and the orangutan Pongo pygmaeus. These apes have traditionally been placed in the family Pongidae as the sister group of Hominidae. Living Hominidae and Pongidae, together with Hylobatidae (gibbons) comprise the modern representatives of the primate suborder Hominoidea.


Symbiosis ◽  
2020 ◽  
Vol 80 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ewa Sajnaga ◽  
Waldemar Kazimierczak

AbstractEntomopathogenic bacteria from the genera Photorhabdus and Xenorhabdus are closely related Gram-negative bacilli from the family Enterobacteriaceae (γ-Proteobacteria). They establish obligate mutualistic associations with soil nematodes from the genera Steinernema and Heterorhabditis to facilitate insect pathogenesis. The research of these two bacterial genera is focused mainly on their unique interactions with two different animal hosts, i.e. nematodes and insects. So far, studies of the mutualistic bacteria of nematodes collected from around the world have contributed to an increase in the number of the described Xenorhabdus and Photorhabdus species. Recently, the classification system of entomopatogenic nematode microsymbionts has undergone profound revision and now 26 species of the genus Xenorhabdus and 19 species of the genus Photorhabdus have been identified. Despite their similar life style and close phylogenetic origin, Photorhabdus and Xenorhabdus bacterial species differ significantly in e.g. the nematode host range, symbiotic strategies for parasite success, and arrays of released antibiotics and insecticidal toxins. As the knowledge of the diversity of entomopathogenic nematode microsymbionts helps to enable the use thereof, assessment of the phylogenetic relationships of these astounding bacterial genera is now a major challenge for researchers. The present article summarizes the main information on the taxonomy and evolutionary history of Xenorhabdus and Photorhabdus, entomopathogenic nematode symbionts.


Sign in / Sign up

Export Citation Format

Share Document