Plasma LH concentrations in the ewe in response to repeated injections of low doses of gonadotrophin releasing hormone during the follicular phase of the oestrous cycle

1984 ◽  
Vol 101 (3) ◽  
pp. 365-370 ◽  
Author(s):  
B. J. McLeod ◽  
W. Haresign

ABSTRACT Oestrus was synchronized in 15 naturally cyclic ewes by the administration of a prostaglandin F2α analogue. Groups of five ewes were then treated i.v. with either small doses of gonadotrophin releasing hormone (GnRH; 125 or 250 ng/injection) or saline, at 2-h intervals from day 14 of the subsequent cycle until 24 h after the onset of oestrus. Treatment with GnRH induced episodic LH release which continued until the onset of a preovulatory LH surge. Mean plasma LH concentrations over this period were significantly (P< 0·001) higher in animals receiving 250 ng GnRH (2·44±0·11 μg/l) than in those receiving either 125 ng GnRH (1·17±0·06 μg/l) or saline (1·14±0·05 μg/l). However, GnRH treatment did not influence the timing of oestrus or mean ovulation rates. J. Endocr. (1984) 101, 365–370

1990 ◽  
Vol 126 (3) ◽  
pp. 377-384 ◽  
Author(s):  
B. K. Campbell ◽  
A. S. McNeilly ◽  
H. M. Picton ◽  
D. T. Baird

ABSTRACT By selective removal and replacement of LH stimulation we sought to examine the relative importance of inhibin and oestradiol in controlling FSH secretion, and the role of LH in the control of ovarian hormone secretion, during the follicular phase of the oestrous cycle. Eight Finn–Merino ewes which had one ovary removed and the other autotransplanted to a site in the neck were given two injections of a gonadotrophin-releasing hormone (GnRH) antagonist (50 μg/kg s.c.) in the follicular phase of the cycle 27 h and 51 h after luteal regression had been induced by cloprostenol (100 μg i.m.). Four of the ewes received, in addition, i.v. injections of 2·5 μg LH at hourly intervals for 23 h from 42 to 65 h after GnRH antagonist treatment. Ovarian jugular venous blood samples were taken at 10-min intervals for 3 h before and 5 h after the injection of antagonist (24–32 h after cloprostenol) and from 49 to 53 h after antagonist (74–78 h after cloprostenol). Additional blood samples were taken at 4-h intervals between the periods of intensive blood sampling. The GnRH antagonist completely inhibited endogenous pulsatile LH secretion within 1 h of injection. This resulted in a marked decrease in the ovarian secretion of oestradiol and androstenedione (P<0·001), an effect that was reversible by injection of exogenous pulses of LH (P<0·001). The pattern of ovarian inhibin secretion was episodic, but removal or replacement of stimulation by LH had no effect on the pattern or level of inhibin secretion. Peripheral concentrations of FSH rose (P<0·01) within 20 h of administration of the antagonist and these increased levels were maintained in ewes given no exogenous LH. In ewes given LH, however, FSH levels declined within 4 h of the first LH injection and by the end of the experimental period the levels of FSH were similar to those before administration of antagonist (P<0·01). These results confirm that ovarian oestradiol and androstenedione secretion, but not inhibin secretion, is under the acute control of LH. We conclude that oestradiol, and not inhibin, is the major component of the inhibitory feedback loop controlling the pattern of FSH secretion during the follicular phase of the oestrous cycle in ewes. Journal of Endocrinology (1990) 126, 377–384


1978 ◽  
Vol 76 (2) ◽  
pp. 211-218 ◽  
Author(s):  
K. K. SEN ◽  
K. M. J. MENON

Specific oestradiol binding to a receptor in nuclear and cytosol fractions of the rat anterior pituitary gland and pituitary responsiveness to gonadotrophin releasing hormone (GnRH) during the oestrous cycle have been studied. To accomplish this, both unoccupied and occupied oestradiol-binding sites in the cytosol and oestradiol-binding sites in the nucleus and total cell were measured during the oestrous cycle. The concentration of unoccupied and occupied sites and total oestradiol binding in the cytosol fluctuated during the cycle. At pro-oestrus, the concentration of cytosol receptor was diminished by about 40% and replenishment occurred during oestrus. On the other hand, a profound increase in concentrations of cellular and nuclear receptors occurred at pro-oestrus. Administration of GnRH significantly stimulated LH release at all stages of the cycle. The maximum stimulation of LH release by GnRH was observed at 13.00 h of pro-oestrus. From these studies, it is concluded that pituitary responsiveness to exogenous GnRH during pro-oestrus parallels the changes in the content of oestrogen receptors in the cytosol and nucleus.


1986 ◽  
Vol 110 (1) ◽  
pp. 19-26 ◽  
Author(s):  
S. L. Alexander ◽  
C. H. G. Irvine

ABSTRACT Luteinizing hormone release induced by a range of small (3·3–33 μg) and large (300–500 μg) i.v. doses of gonadotrophin-releasing hormone (GnRH) was measured in acyclic (n = 4), luteal phase (n = 3) and follicular phase (n = 5) mares and compared with endogenously generated LH pulses in the same reproductive states. Extrapolation from log–linear dose–response curves showed that an LH pulse comparable to an endogenous one would be simulated by i.v. injection of 7·0 (n = 4) and 4·1 (n = 6) μg GnRH in luteal and follicular phase mares respectively; a much smaller dose than the 500 μg usually given clinically or experimentally. In acyclic mares (n = 4), LH pulses occurred too infrequently to be characterized. At small doses of GnRH the amount of LH released by the same dose was similar in all three reproductive states, although the steroid hormone milieu differed markedly. This implies that observed differences between states in mean (± s.e.m.) serum LH concentrations (0·7 ± 0·01, 1·2 ± 0·03 and 11·6 ± 0·33 (μg/l) in acyclic, luteal and follicular phase mares respectively) were produced by differences in GnRH pulse frequency and/or amplitude and not by steroid-mediated changes in pituitary response to GnRH. In acyclic, luteal and follicular phase mares, LH pulse frequency was: immeasurably low, 0·09 and 1·14 pulses/h respectively, which supports the important contribution of pulse frequency to determining mean LH concentration. The LH response to large doses of GnRH was significantly greater in the luteal than in the follicular phase, and was greater than the response to 33 μg in the luteal phase but not in the other two states. Thus, to a large but not to a small dose of GnRH, the pituitary appeared most responsive in the luteal phase. Therefore, in studies of the physiology of the hypothalamic-pituitary system, small doses of GnRH, which induce physiologically sized LH responses, may be preferred to large doses, which result in a level of stimulation to which the pituitary is never naturally exposed and to which it may respond in a non-physiological manner. J. Endocr. (1986) 110, 19–26


2009 ◽  
Vol 21 (5) ◽  
pp. 672 ◽  
Author(s):  
Chatchote Thitaram ◽  
Pornsawan Pongsopawijit ◽  
Saran Chansitthiwet ◽  
Janine L. Brown ◽  
Kannikar Nimtragul ◽  
...  

A unique feature of the reproductive physiology of Asian elephants (Elephas maximus) is the occurrence of two LH surges before ovulation, instead of one. An anovulatory LH (anLH) surge, the function of which is unknown, occurs consistently 3 weeks before the ovulatory LH (ovLH) surge that induces ovulation. Thus, the ability to induce an ovLH surge would be useful for scheduling natural mating or artificial insemination. The present study tested the efficacy of a gonadotrophin-releasing hormone agonist (GnRH-Ag) to induce LH surges during the follicular phase of the oestrous cycle, which resulted in varied LH responses, but generally none were as high as previously documented natural surges. Thus, for the ovulation-induction trials, nine females were administered 80 μg GnRH-Ag intravenously at three time periods during the oestrous cycle, namely the anovulatory follicular phase, the ovulatory follicular phase and the luteal phase. During the late anovulatory follicular phase, nine of 10 females (90%) responded with an immediate LH surge followed 15–22 days later by an ovLH surge or a post-ovulatory increase in progestagens. In contrast, despite responding to the GnRH-Ag with an immediate increase in LH, none of the females treated during other periods of the oestrous cycle exhibited subsequent ovLH surges. One cow got pregnant from natural mating following the induced ovLH surge. In conclusion, ovLH induction is possible using a GnRH-Ag, but only during a specific time of the anovulatory follicular phase.


1987 ◽  
Vol 112 (1) ◽  
pp. 77-85 ◽  
Author(s):  
R. G. Glencross

ABSTRACT To stimulate a follicular-phase pattern of pulsatile LH release, gonadotrophin-releasing hormone (GnRH; 5 μg) was infused (i.v.) hourly into heifers for periods of 5–11 days during the luteal phase of the oestrous cycle, and also when plasma progesterone levels were increased artificially by means of a progesterone-releasing intravaginal device. Plasma oestradiol-17β concentrations increased from basal (EEE 2·5 pmol/l) to preovulatory peak levels (20–30 pmol/l) during the first 3 days of GnRH treatment. They were maintained at these values before returning to basal levels within 24 h of cessation of infusion. This response occurred regardless of the source of progesterone (endogenous or administered). Follicular development was observed by ovarian palpation (per rectum) in some heifers at the time of maximum secretion of oestradiol-17β. There was no detectable cervical mucus secretion or oestrous behaviour during these periods of high oestradiol-17β levels and ovulation did not occur. Treatment with GnRH did not affect plasma progesterone concentrations or oestrous cycle length. The study shows that oestradiol-17β secretion and follicular development (and the accompanying oestrus and ovulation) are suppressed during the luteal phase of the cycle by high concentrations of plasma progesterone, and provides strong indirect evidence that such inhibition is associated with a reduction in the pulse frequency of LH release. J. Endocr. (1987) 112, 77–85


Reproduction ◽  
1974 ◽  
Vol 36 (2) ◽  
pp. 474-475 ◽  
Author(s):  
R. Hooley ◽  
R. Baxter ◽  
W. Chamley ◽  
I. Cumming ◽  
J. Findlay

1991 ◽  
Vol 130 (2) ◽  
pp. 169-175 ◽  
Author(s):  
T. Battmann ◽  
S. Mélik Parsadaniantz ◽  
B. Jeanjean ◽  
B. Kerdelhué

ABSTRACT The effects of substance P (SP) on the preovulatory surge of LH and on the inhibitory and stimulatory effects of oestradiol-17β and progesterone on gonadotrophin-releasing hormone (GnRH)-induced LH release were investigated in vivo and in vitro in the rat. A single s.c. injection of 100 μg SP at 12.00 h on the day of pro-oestrus significantly decreased the preovulatory surge of LH. In vitro, the inhibitory effect of oestradiol-17β on GnRH-induced LH release was not modified by treatment with SP. The stimulatory effect of progesterone on GnRH-induced LH release was reduced by treatment with SP. It is concluded that SP may play a modulatory role in the neuroendocrine control of the preovulatory LH surge. Journal of Endocrinology (1991) 130, 169–175


1986 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
J. E. A. McIntosh ◽  
R. P. McIntosh

ABSTRACT Our aim was to determine whether release of LH and FSH can be controlled differentially by the characteristics of applied signals of stimulatory gonadotrophin-releasing hormone (GnRH) alone, free of the effects of steroid feedback or other influences from the whole animal. The outputs of both gonadotrophins were significantly correlated (r≈0·90; P<0·0005) when samples of freshly dispersed sheep pituitary cells were perifused in columns for 7 h with medium containing a range of concentrations of GnRH in various patterns of pulses. Hormone released in response to the second, third and fourth pulses from every column was analysed in detail. Dose–response relationships for both LH and FSH were very similar when cells were stimulated with 5–8500 pmol GnRH/1 in 5-min pulses every hour. When GnRH was delivered in pulses at a maximally stimulating level, the outputs of both hormones increased similarly with increasing inter-pulse intervals. Efficiency of stimulation (release of gonadotrophin/unit stimulatory GnRH) decreased (was desensitized) with increasing pulse duration in the same way for both hormones. Thus, varying the dose, interval and duration of GnRH pulses did not alter the proportions of LH and FSH released in the short-term from freshly dissociated cells. However, the same cell preparations released more LH relative to FSH when treated with maximally stimulating levels of GnRH for 3 h in the presence of 10% serum from a sheep in the follicular phase of its ovulatory cycle compared with charcoal-treated serum. Because there was no gonadotrophin synthesis under the conditions used in vitro these results suggest that changes in the LH/FSH ratio seen in whole animals are more likely to result from differential clearance from the circulation, ovarian feedback at the pituitary, differential synthesis in intact tissue or another hormone influencing FSH secretion, rather than from differences in the mechanism of acute release controlled by GnRH. J. Endocr. (1986) 109, 155–161


2017 ◽  
Vol 233 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Kinuyo Iwata ◽  
Yuyu Kunimura ◽  
Keisuke Matsumoto ◽  
Hitoshi Ozawa

Hyperandrogenic women have various grades of ovulatory dysfunction, which lead to infertility. The purpose of this study was to determine whether chronic exposure to androgen affects the expression of kisspeptin (ovulation and follicle development regulator) or release of luteinizing hormone (LH) in female rats. Weaned females were subcutaneously implanted with 90-day continuous-release pellets of 5α-dihydrotestosterone (DHT) and studied after 10 weeks of age. Number of Kiss1-expressing cells in both the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) was significantly decreased in ovary-intact DHT rats. Further, an estradiol-induced LH surge was not detected in DHT rats, even though significant differences were not observed between DHT and non-DHT rats with regard to number of AVPV Kiss1-expressing cells or gonadotrophin-releasing hormone (GnRH)-immunoreactive (ir) cells in the presence of high estradiol. Kiss1-expressing and neurokinin B-ir cells were significantly decreased in the ARC of ovariectomized (OVX) DHT rats compared with OVX non-DHT rats; pulsatile LH secretion was also suppressed in these animals. Central injection of kisspeptin-10 or intravenous injection of a GnRH agonist did not affect the LH release in DHT rats. Notably, ARC Kiss1-expressing cells expressed androgen receptors (ARs) in female rats, whereas only a few Kiss1-expressing cells expressed ARs in the AVPV. Collectively, our results suggest excessive androgen suppresses LH surge and pulsatile LH secretion by inhibiting kisspeptin expression in the ARC and disruption at the pituitary level, whereas AVPV kisspeptin neurons appear to be directly unaffected by androgen. Hence, hyperandrogenemia may adversely affect ARC kisspeptin neurons, resulting in anovulation and menstrual irregularities.


Sign in / Sign up

Export Citation Format

Share Document